全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

海洋是温室气体的贮存器和火药桶:火山是温室气体排放的导火索

已有 3270 次阅读 2021-9-1 15:07 |个人分类:全球变化|系统分类:论文交流

海洋是温室气体的贮存器和火药桶:火山是温室气体排放的导火索

                                    吉林大学:杨学祥,杨冬红


      地球变暖不是来自一个原因,不能只让二氧化碳背锅!

       澳大利亚的一个学者认为冰川融化没有从冰川的顶部开始,而是从底部一点一点融化的,这就可能因为地球本身的热度引起的,要知道我们的地球靠太阳来得到充足的热量,但是地球的内部也可以发热,地球里是有岩浆的,再加上内部的能量巨大,这些质量在一起发生质变就会产生热量,所以地球是在散热的。地球变暖不是来自一个原因,二氧化碳也许也是一个原因,但也许还存在更多的原因,所以不能只让二氧化碳背锅!

       每年地表热流值为1020焦耳,潮汐能为1019焦耳,地震火山活动能量为2017-18焦耳。地球内部的热能释放是客观事实,对地球变暖的贡献不容忽视。我们早在1999年就提出了“海洋锅炉效应”。

       我们在1996年指出,火山活动主要受地球内部能量间歇性释放所控制。海洋锅炉效应、海底藏冷效应、海震调温效应和强潮汐调温效应比温室效应有更显著的调温效果。自然杂志最新文章证实了这一结论。

图1 海底藏冷效应和海洋锅炉效应


http://blog.sciencenet.cn/blog-2277-521283.html

http://blog.sciencenet.cn/blog-2277-691970.html 

http://blog.sciencenet.cn/blog-2277-1169084.html

  海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近。两极临近结冰的海水密度最大,源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。随着海洋冷水区的不断扩大和赤道海洋表层热水区的不断缩小,赤道和两极的温差也不断加大,形成中、高纬度地区的冰盖和冰川。我们称这个过程为海底藏冷效应。它是海气相互作用的典型范例,大气中的冷能由此而进入海洋。冰雪反射太阳辐射,随着冰雪面积的不断扩大,地表接受到的太阳能量越来越少,使大气和海洋越来越冷,冰期有一个长期的冷积累过程。

  由于内核相对地壳地幔的差异旋转,太阳辐射达到最大值时使核幔角动量交换达到高峰,部分旋转动能转变为热能积累在核幔边界赤道区(此处核幔速度差最大,积累的热能最多)。超级热幔柱(羽)由核幔边界赤道热区升起,在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,消除了海洋藏冷效应的冷源,形成全球无冰温暖气候,产生晚白垩纪赤道海洋表层低温之谜(当时温度为摄氏21度,比现代低6.5度)。我们称这个过程为海洋锅炉效应。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15度,大气冷却了10~15度。这是典型的地、海、气相互作用。计算表明,一亿二千万年前形成翁通爪哇海台的海底热幔柱喷发,其释放的热量可使全球海水温度增高33度,喷发过程经历了几百万年时间。有证据表明,在古新世末不到6000年的时间内大洋底层水增温4度以上。海底火山活动引发的深海热对流在全球气候变化中的作用不容忽视

http://blog.sciencenet.cn/blog-2277-736985.html

http://blog.sciencenet.cn/blog-2277-521283.html

       实际上,地球的气候是一个多种因素参与的动态平衡:海底藏冷效应导致冰盖从两极扩展到赤道,形成雪球地球,阻塞了地球散热的通道,海底火山的喷发,加热了海洋,释放了温室气体,导致冰盖的融化,形成海洋锅炉效应。与此同时,火山灰污染了冰雪表面,降低了冰雪的反光率,接收更多的太阳光使地球变暖。

     贮存器和火药桶:海水增温导致的温室气体排放

最近,日本一项研究发现,由于全球变暖导致降水增加,西伯利亚永久冻土带的森林土壤将更易释放甲烷,从而导致全球变暖进一步加剧。

  日本森林综合研究所1日发表的一份公报称,2005年至2007年,该所研究人员在中西伯利亚永久冻土带的落叶松林中,检测了土壤吸收和释放甲烷的速度。结果发现,2005年和2006年,土壤中吸收甲烷的甲烷氧化细菌活跃,全年吸收的甲烷量超过了释放的甲烷量。

  但是,在年降水量比常年多的2007年,森林土壤释放的甲烷量则超过了吸收的甲烷量。研究小组认为,这是由于土壤含水量增加导致甲烷氧化细菌不够活跃,而生成甲烷的产甲烷菌的活动则变得活跃造成的。

  研究小组认为,随着全球变暖,中西伯利亚降水量预计会增加,所以甲烷的释放量有可能进一步增加。

联合国政府间气候变化专门委员会(IPCC2013年的报告曾指出,全球变暖会导致西伯利亚地区释放大量甲烷,不过报告没有考虑到降雨对于甲烷释放量的影响。此次发现将有助于IPCC更准确地预测全球变暖趋势。

Gerlach的估算,全球陆相火山以宁静方式放出二氧化碳的速率为每年792 百万吨,而陆相火山喷发出的二氧化碳的速率仅为每年66 百万吨[32]。前者是后者的12倍多。宁静方式火山放气没有明显的火山灰,其增温效果显著。

近期发现海洋气体水合物(可燃冰)蕴藏的碳为地球上所有已知天然气、原油和煤的碳量的二倍,从中逃逸出的气体形成的温室效应远大于人类活动[39]

人类排放的温室气体可以人为控制,但代价巨大。自然排放的温室气体数量同样巨大,但不可控制,是触发自然灾难和气候变化的基本因素,需要更多研究和关注,否则,人类的各种努力都会功亏一篑。

自然排放温室气体的方式有多种,包括森林大火、煤层自燃、火山喷发、地下排气、冻土增温等,其中,海洋既是温室气体的贮存器也是火药桶。

   海洋既是温室气体的贮存器也是火药桶

海洋是温室气体的巨大贮存器,也是温室气体排放的火药桶,只要存储在海洋中的碳释放2 %,就将使大气中的CO2含量增加一倍。在个大气压下,海水温度从0升高为25,每克海水可释放约1 cm3体积的CO2,释放量与残留量的比值约为11。目前全球海洋溶解的CO2是大气中CO213倍,以此比例,海水升温25,大气中CO2的含量应该增加到现在的6.5倍,这表明白垩纪海洋增温释放的CO2是大气CO2浓度增高的主要来源[55]

所以,海底藏冷效应通过冷水下沉,将温室气体封存在海底;海洋锅炉效应通过热水上升,将温室气体排放到大气。

CoffinEldholm1993)海洋考察结果,巨大火成区所显示的大陆溢流玄武岩和大洋溢流玄武岩的喷发强度与全球高温和大气CO2高浓度对应(见图2-4


图2  巨大火成区和全球变暖

Fig 2  Large igneous provinces and global warming


图3  巨大火成区的规模比例

Fig 3  The proportion of the large igneous provinces

 

120Ma前海底地幔柱喷发形成翁通爪哇海台,其释放的热量为6×1026J,海洋的质量为1.45×1024g,可使全球海水温度增高33,平均每万年海温升高0.1[35]。有证据表明,在古新世末不到6000年的时间内大洋底层水增温4以上。海底火山活动引发的海温增高和CO2排放在全球气候变化中的作用不容忽视,这是白垩纪强烈火山活动、大气中高浓度CO2和异常高温一一对应的原因。

最近发现在15~20Ma前南极的夏季温度要比现在高出大约11,最高可以达到大约7。这一南极地区的“绿化”过程最高峰大致出现在中新世中期,距今大约16.4~15.7Ma。中新世中期的温暖环境被认为应当对应于400~600ppm的大气二氧化碳浓度15 Ma前发生的哥伦比亚溢流玄武岩喷发是大气CO2浓度增加的原因(见图1-2)。

在过去的20年中,研究人员搜集了有关古新世—始新世(5500万年前)最热现象(PETM)的数据。在PETM期间,地球的表面温度在1万年的时间里上升了9,而这一事件的起始温度要高于地球目前的气温。地球的温度在这一较高水平上一直持续了近10万年。在PETM期间,大气中的气体浓度上升了约700 ppm(百万分之一),即从1000 ppm升至1700 ppm——这比现今的385 ppm高出了4倍之多。据估计,温室气体的大量灌入形成了这一气温峰值。

然而一项新的分析结果似乎并不能完全支持这一假设。研究人员模拟了在PETM期间,大气的灵敏度增加到翻一番的二氧化碳水平——2000 ppm,地球温度会发生何种变化。最终的结果显示,这些二氧化碳最高可以使温度升高3.5。这就意味着还有一些其他的因素使地球的温度升高了5.5。这一无法解释的变暖现象使人们对究竟是什么导致了重大且快速的气候变化的认知存在着一个缺口:二氧化碳不是造成古气候峰值唯一原因

事实上,5500万年前的温度峰值与北大西洋边缘的巨大火成区同时出现,后者喷出的熔岩为哥伦比亚溢流玄武岩体积的3倍多1000km3熔岩要释放1.6×1013 kgCO23×1012kg的硫和3×1010kg的卤素。一个巨大火成区的累积过程要发生上千次这样的喷发,它使现代人类造成的污染物产生的影响相形见绌120Ma前海底热幔柱喷发形成翁通爪哇海台的体积为36×106km315 Ma前发生的哥伦比亚溢流玄武岩体积为1.3×106km3,释放的CO2分别为5.8×1017 kg2.1×1016 kg。图3中可以看到,巨大火成区大部分处于海洋及其边缘,喷发物被海水过滤,减少火山灰降温作用,增强温室气体增温作用。海洋被加热,释放大量温室气体,两种因素都导致气温升高。

 


图4 全球巨大火成区(黑色部分)

Fig 4 Global large igneous provinces

Engel and Engel给出了6亿年以来北美火山喷发曲线(见图45Larson给出了1.5亿年以来全球地磁、洋壳产量、古温度、古海平面、黑色页岩的异常变化,与图1-2的变化趋势基本一致。


图5  北美火山活动曲线(据Engel and Engel, 1964[39]

Fig. 5 The cure of volcanic activity in North Americaafter Engel and Engel, 1964

在过去4.5亿年中地球旋转速率、地磁轴视极移、洋脊的活动、海平面和气候变化有伴随出现的现象。地球旋转加速时期主要对应了正极性时期,而旋转减慢时期主要对应了负极性时期,前者如志留纪至早泥盆纪和中生代,这阶段由于地球旋转速度加快,使地磁极具正极性、洋脊活动增强、全球性海侵和古气候变暖。自晚泥盆纪至二叠纪和新生代,是地球旋转速度减慢时期,表现为负极性为主、洋脊活动减弱、全球性海退、气候剧烈变化和出现大冰期。这些资料表明,在几亿年时间尺度上,各种地质旋回有一定程度的相关性存在,与地球自转速度变化相对应[42]

叶淑华院士指出,在距今0.65-1.4亿年前的白垩纪,地磁场突然倒转,岩浆活动非常剧烈;大气温度比现在高18左右;海平面比现在约高150;地球的自转变快;古生物大量灭绝;大气中CO2的含量十倍于现在;陨石增多[43]。在此期间,地球自转速度处于峰值。相反,437Ma的奥陶志留纪大冰期和437Ma的石炭二叠纪大冰期对应地球自转速度低谷。

巨大火成区来自核幔边界地幔柱的猛烈喷发,核幔边界地幔柱喷发的能量又来自何处?

理论模型研究和实际测量表明,地球内核自转较快,地壳和地幔自转较慢,形成地球内外圈层的差异旋转,核幔边界不仅是热交换边界,而且是圈层角动量交换的边界。最强的太阳辐射加强圈层角动量交换,使地壳和地幔自转变快,内核自转变慢,部分动能转化为热能积累在核幔边界。这是地球自转加速对应大规模地幔柱喷发的原因

化石种类数据的小波分析显示存在大约62Ma140Ma两个明显周期。这表明地表周期与地球深部周期的一致性。这些新的结果指出,各种地质过程的一致性可能是与深部地幔的活动变化相关的。银河年280Ma周期在地球大冰期和温暖期转换周期、地球自转长期变化周期、火山喷发长周期、陆海变动周期、造山作用周期、地磁极性变化长周期都有明显的表现。280Ma周期是140Ma周期的倍数周期,是140Ma周期受控于银河年周期的证据,最可能的因素是太阳辐射强度的变化。太阳风和太阳辐射量的变化可以压缩地球磁场,增强或减弱核幔角动量交换,对核幔边界的地幔柱活动有控制作用(图1

巨大火成岩省形成时释放的甲烷和CO2是导致全球变暖的重要原因,但是,导致全球变暖的巨大火成岩省有多种作用,温室效应只是其中的一种。使海洋底层水增温,这是巨大火成岩省无可替代的致暖作用。在导致海水增暖的同时,也导致海水中温室气体的排放。

巨大火成岩省的海台和洋壳产量在白垩纪是最高的,洋壳产量的最高速度为37×10km3/Ma(目前的洋壳产量为17×10km3/Ma对海洋温度的提高贡献最大。存储在海洋中的碳只要释放2 %,就将使大气中的CO2含量增加一倍。海洋是CO2的储库。在个大气压下,海水温度从0升高为25,每克海水可释放约1 cm3体积的CO2,释放量与残留量的比值约为11。目前全球海洋溶解的CO2是大气中CO213倍,以此比例,海水升温25,大气中CO2的含量应该增加到现在的6.5倍,这表明白垩纪海洋增温释放的CO2是大气CO2浓度增高的主要来源

火山喷发出的火山灰能够遮蔽阳光,具有致冷作用;火山喷出的温室气体——CO2和水汽具有致热作用。特别值得指出的是,海底火山喷发经过海水过滤,不仅能释放出海洋中的温室气体,而且能使大气和海洋同时增温。温室效应只有增温效应,模拟计算表明,二氧化碳不是造成古气候峰值唯一原因。

近一亿年间海洋底层水冷却了摄氏15,大气冷却了10-15,而第四纪冰期到来之时,海洋底层水温度为0,目前为2。这表明全球温暖期对应海洋底层水的高温期,全球大冰期对应海洋底层水低温期,海洋底层水是地球储存冷能的仓库。新洋壳生成和海底火山活动引发的海温升高和海水中CO2释放在全球气候变化中的作用不容忽视,这是人为温室效应所不能达到的。       

    火山喷发造成的化石能源燃烧加速推动地球生物灭绝

      发生在大约2.52亿年前的二叠纪-三叠纪生物大灭绝,在短短几万年的时间里,使96%的海洋生物和约70%的陆地生命从地球上永远消失。证实了巨大火成区造成温室气体大排放的理论推测(见表1)。

      当时,位于如今西伯利亚地区的古老火山喷出了大量岩浆,覆盖了相当于美国表面积三分之一甚至一半的土地,这一过程持续了大约一百万年。然而,火山爆发不是导致大灭绝的根本原因。

       据两个独立的科学家团队发布的最新研究论文,正是由于西伯利亚火山岩浆燃烧了大量地下石油和煤炭沉积物,燃烧过程中释放出二氧化碳和甲烷等温室气体,进而导致了大灭绝的发生。日本东北大学的地球化学家Kunio Kaiho团队发现两起火山爆发事件与二叠纪末陆地与海洋生物灭绝时间吻合。而苏格兰圣安德鲁斯大学生物地理化学家Hana Jurikova团队在大灭绝边界的贝壳化石中发现了海洋酸化的证据,证实了化石燃料燃烧和温室气体释放造成海洋酸化,从而导致珊瑚等海洋生物溶解死亡。

       这些研究发现进一步证实了气候变化对地球生命的影响。如果将大灭绝与如今全球变暖进行类比,大灭绝期间排放的温室气体总量远远超过人类产生的温室气体。然而,当时火山释放出二氧化碳的速度比今天人类的排放速度要慢14倍。因此,我们目前每年燃烧产生的碳量比大灭绝时期的任何时候都高得多。如果不能遏制温室气体排放,未来气候变化对生物的严重影响或许可以预见。

       英国科学家的最新研究称,在距今大约2.5亿年前,大规模火山喷发毁灭了全球的森林,使得地球到处是以树木为食的真菌。

  这项研究证实,即便是生命力极强的树木,也未能在二叠纪物种大灭绝事件的浩劫中幸免,那也是已知地球上最具破坏性的物种灭绝事件之一。在这次灭绝事件中,超过95%的海洋生物物种和70%的陆地生物物种从地球上永远消失,它们极有可能毁灭于集中在当今西伯利亚一带的长期火山喷发喷射的有毒气体。

  火山喷发在全球范围内形成了大量酸雨,并破坏了臭氧层,使得更多有害的紫外线到达地面。在此之前,研究人员并未发现大灭绝期间地球状况的实物证据,于是,很多人推测二叠纪的森林相对完整地幸存下来。不过,最新研究表明,地球上的森林植被那时同样遭受重创。

  领导实施此项研究的英国伦敦帝国学院地球化学家马克·塞普敦(Mark Sephton)说:“火山喷发以后,世界可能变成一片片奇特的绿地,到处是类似石松的结构简单的植物,还有大量死去的树木。”在接下来的400万年中,地球上仍极少看到树木,但是,由于可以适应这种酸性的新环境,真菌得以幸存下来。

  科学家在二叠纪大绝灭时期的岩层中发现的真菌孢子化石显示,一种称为Reduviasporonites的远古生物在全球范围内的生长却在那个时期达到顶峰。从此,科学家一直在争论这种已经灭绝的生物是靠光合作用为生的水藻,还是以树木为食的真菌。为了揭开这个谜底,塞普敦及其同事分析了Reduviasporonites中不同种类的碳和氮,并将结果与现代真菌进行比较。

  他们发现,这种远古生物与以枯树为食的真菌具有相似的饮食化学结构(dietary chemistry)。Reduviasporonites真菌的大规模突然繁殖表明有大批树木在灭绝事件中死亡,为真菌提供了源源不断的美食。据塞普敦介绍,现在,地球上由真菌主导的地区位于捷克,由于焚烧大量褐煤产生的酸雨破坏了大面积林地,那里以树木为食的真菌大量繁殖。

  塞普敦补充说,在全球范围内,人类活动“正以地质历史上前所未有的速度”改变着地球大气层的气体平衡。此外,今天物种多样性减少放映了二叠纪生物大灭绝事件的早期状况。塞普敦说:“这是严重违背自然规律的人类实验,我们只是不知道这一切将如何结束。”研究结果刊登在最新一期《地质学》(Geology)杂志上。

http://blog.sciencenet.cn/blog-2277-263236.html

1  地球自转周期与地质旋回

时间   地球自转  全球气候   生物灭绝事件                

/Ma                                                                         形成物       体积/106km3

480     高峰      温暖期                                北美火山活动高峰

437     低谷  奥陶志留纪大冰期                  北美火山活动低谷

370     高峰  泥盆纪温暖期                         北美火山活动高峰

280     减慢  石炭二叠纪大冰期                  北美火山活动减弱

248     减慢                                                   西伯利亚暗色岩

230     低谷   二叠纪大冰期末                    北美火山活动低谷

160     加快   中生代温暖期                        三大洋底重大裂解作用

140     加快   中生代温暖期                        香港超级火山

139     加快   中生代温暖期                        三大洋底重大裂解作用

120~124 高峰      温暖期    不明显 (水下喷发)     翁通爪哇海台        36

                                                                        北美火山活动高峰

110~115 加快      温暖期  大规模生物灭绝        凯尔盖朗海台       变小

97      加快   中生代温暖期                     三大洋底重大裂解作用

65~69   高峰      温暖期  恐龙灭绝,所有物种近  德干暗色岩         变小

               一半灭绝                        

55~59   高峰      温暖期   许多深海有孔虫类和    北大西洋火山       变小

                            陆生哺乳动物灭绝      边缘

25      低谷      低温

15~18   加快      变暖         大规模物种灭绝        哥伦比亚河溢        1.3

                                                                                流玄武岩

10~12   高峰      变暖

0~2    低谷   第四纪大冰期                     北美火山活动低谷

 http://blog.sciencenet.cn/blog-2277-663979.html

 http://blog.sciencenet.cn/blog-2277-826777.html


     大自然的温室气体“海底压缩贮存效应”和“海面减压释放效应”

     2015119我们发表了《温室气体伴同冷水的深海循环:冰期时代的温室气体去向》博文。

http://blog.sciencenet.cn/blog-2277-860950.html

本文的重要性是给出了大气和海洋之间温室气体的自然循环:海底的巨大压力将温室气体压缩贮存,例如将甲烷变为“可燃冰”。人为温室气体的密闭封存不过是在简单地模仿自然过程。

可燃冰,即天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(Combustible ice)或者“固体瓦斯”和“气冰”。其实是一个固态块状物。天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。

可燃冰的学名为天然气水合物,是天然气在030个大气压的作用下结晶而成的冰块冰块里甲烷占80% 99.9%,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。西方学者称其为“21世纪能源未来能源 1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。随着研究和勘测调查的深入,世界海洋中发现的可燃冰逐渐增加,1993年海底发现57处,2001年增加到88处。据探查估算,美国东南海岸外的布莱克海岭,可燃冰资源量多达180亿吨,可满足美国105年的天然气消耗;日本海及其周围可燃冰资源可供日本使用100年以上。 

探测资料显示,“可燃冰”为地球上所有已知天然气、原油和煤的碳量的二倍,从中逃逸出的气体形成的温室效应远大于人类活动。海洋锅炉效应是地下和海洋中温室气体进入大气的原因,核幔角动量交换和地球形变又是海洋锅炉效应的原因。

冰期时代的温室气体去哪了?结论是,温室气体伴同冷水的深海循环由大气进入海底。理论推导得出两个实用的指标:

其一,海底冷水温度的降低意味着温室气体由大气向海底积累;海底冷水温度的升高意味着温室气体由海洋向大气释放。

其二、海底冷水温度的降低意味着全球变冷;海底冷水温度的升高意味着全球变暖。

  结论

温室效应仅仅是导致全球变暖的一种因素,海水增温排气也是全球变暖的重要因素,海洋底层温度变化是大气温度变化的可靠前兆。

研究表明,全球温暖期对应海洋底层水的高温期,全球大冰期对应海洋底层水低温期,海洋底层水是地球储存冷能的仓库,如果海洋底层水温度没有提高到一亿年前的水平,全球就不会重现中生代白垩纪的高温期,强潮汐和强震会不断用海底冷水来冷却大气,使气候变冷。海洋底层温度变化是全球气候变化的晴雨表,地球内部能量释放、海水温度和全球气候的相关性,使我们有可能通过海底温度的变化预测全球气候长期变化[62]

目前,海洋可吸收人类排放二氧化碳的约四分之一,这表明海洋中的二氧化碳并未达到饱和。海水增温,不断降低海水中二氧化碳的溶解度,一旦海水中二氧化碳的溶解度达到饱和的临界点,海洋增温就会导致海水中二氧化碳的排放。人类将无法控制这一自然进程。

近期的研究表明海洋增温吸收热量是全球变暖停滞16年的原因,增温排气是其最后的恶果。海洋增温排气不仅有二氧化碳,而且包括储量巨大的可燃冰。

http://blog.sciencenet.cn/blog-2277-860950.html

http://blog.sciencenet.cn/blog-2277-861071.html

参考文献

1.     杨冬红杨学祥北半球冰盖融化与北半球低温暴雪的相关性研究[J].地球物理学进展.2014, 29 (1): ????. YANG Dong-hong, YANG Xue-xiang. Study on the relation between ice sheets melting and low temperature in Northern Hemisphere. Progress in Geophysics. 2014, 29 (1): ??.

2.     杨学祥陈殿友火山活动与天文周期地质论评, 1999, 45(增刊): 33-42. Yang X X, Chen D Y. The Volcanoes and the Astronomical Cycles. Geological Review (in Chinese), 1999, 45(supper): 33-42.

3.    杨冬红杨学祥地球自转速度变化规律的研究和计算模型地球物理学进展, 2013281):58-70 Yang D H, Yang X X. Study and model on variation of Earths Rotation speed. Progress in Geophysics (in Chinese), 2013, 281):58-70.

4.     杨学祥,陈殿友地核的动力作用[J]. 地球物理学进展,1996 111): 68-74. Yang X X, Chen D Y. Action of the earth core[J]. Progress in Geophysics, 1996, 11(1): 68-74.

5.     杨学祥陈震刘淑琴等地球内核快速旋转的发现与全球变化的轨道效应地学前缘, 1997, 4(1): 187-193.Yang X X, Chen Z, Liu S Q, et al. The discovery of fast rotation of the earth’s inner core and orbital effect of global changes. Earth Science Frontiers (in Chinese), 1997, 4(1): 187-193.

6.     杨学祥陈殿友地球差异旋转动力学长春吉林大学出版社, 1998, 2, 27-33,79,120-122, 196-198.

Yang X X, Chen D Y. Geodynamics of the Earth’s differential rotation and revolution. Changchun: Jilin University Press (in Chinese), 1998, 2, 27-33, 120-122, 196-198.

7.   杨冬红,杨学祥. 全球气候变化的成因初探. 地球物理学进展. 2013, 28(4): 1666-1677.Yang X X, Chen D Y. Study on cause of formation in Earth’s climatic changes. Progress in Geophysics (in Chinese), 2013, 28(4): 1666-1677.

8.     杨学祥张中信陈殿友地核能量的积累与释放地壳形变与地震.  1996, 16(4):85-92. Yang X X, Zhang Z X, Chen D Y, et al. Energy accumulation and liberation in earth’s core (in Chinese). Crustal Deformation and Earthquake. 1996. 16(4): 85~92.

9.     杨学祥陈殿友热幔柱构造与地核热能.  地壳形变与地震. 1996, 16(1):27-36. Yang X X, Chen D Y.  Mantle plume tectonics and thermal energy of the core (in Chinese). Crustal Deformation and Earthquake. 1996. 16(1): 27~36.

10.  杨冬红杨学祥. 2006. 20041226印尼地震海啸与全球低温地球物理学进展, 21(3): 1023~1027

Yang D H, Yang X X, Liu C. 2006. Global lowtemperature, earthquake and tsunami (Dec. 26, 2004) in Indonesia.Progress in Geophysics (in Chinese), 21(3): 1023~1072

  11. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.

Yang Dong-hong. 2009. Tidal Periodicity andits Application in Disasters Prediction[D]. [Ph. D. thesis]. ChangchunCollege of Geo-exploration Scienceand Technology, Jilin University.

  12. 杨冬红,杨德彬,杨学祥. 2011a. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 544):926-934

Yang D H, Yang DB, Yang X X. 2011b. The influence of tides andearthquakes in global climate changes[J]. Chinese Journal of geophysics (inChinese), 54(4): 926~934

http://blog.sciencenet.cn/blog-2277-1169084.html




https://blog.sciencenet.cn/blog-2277-1302377.html

上一篇:厄尔尼诺指数进入快速上升区间:2021年9月1日午报
下一篇:厄尔尼诺指数进入上升区间:2021年9月1日晚报
收藏 IP: 103.57.12.*| 热度|

4 周少祥 张学文 尤明庆 刘炜

该博文允许注册用户评论 请点击登录 评论 (2 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-24 04:22

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部