大毛忽洞分享 http://blog.sciencenet.cn/u/大毛忽洞 自留地是桃花源,只种颜色不耕田。 点击 【博文】 看分类目录 邮箱: lishchlishch@163.com;lishchlishch@gmail.com

博文

特征标理论,回避了坐标操作矩阵

已有 8202 次阅读 2009-4-21 10:39 |个人分类:晶体学和空间群|系统分类:科研笔记| 原子坐标, 特征标

特征标理论,回避了坐标操作矩阵

点群操作的结果,一是变换了坐标(X,Y,Z),二是变换了函数(f(X,Y,Z))。前者是涉及坐标操作矩阵,后者涉及特征标。

关于点群特征标的数据,很容易查阅到,而关于坐标操作矩阵的数据,多数是查阅不到的。

推导坐标操作矩阵,就得让大脑转动起来,当然还要进行镜面和反演操作,还要有各种S(转动+反演)操作。

如果头脑里没有点群操作的物理图像,三转两转就把人给转晕了。

还好,多年转动魔方的经验,让我习惯了这种颠来倒去的转动,同时魔方也给了我一个非常明确的而且很容易把握的点群操作的物理图像。

因此,我推导了32(再加一个C60Ih点群)点群的全部坐标操作矩阵,根据这些矩阵也可以把32点群的特征标求出来。不过没有这个必要了,因为查找点群的特征标太容易了。

求解坐标操作矩阵本质上只有一条路可走,而求解特征标有很多途径。

1. 根据同构的点群来求特征标

如果两个群同构,它们的乘法表是完全一样的,它们的特征标也是完全一样的。例如C3vD3就是这种情况,但是它们的坐标操作矩阵是不完全相同的。

2. 根据点群的正则表示求特征标

构造一个点群的正则表示是很容易的,然后再选择一组基函数,把这些基函数正交归一地排列之后,就会得到一个矩阵,用这个矩阵去约化原来的正则表示,就得了这个点群的不可约表示,最后根据不可约矩阵表示求出特征标。

搞群论代数的人,他们有更多方法,但是都不涉及坐标操作矩阵。

刘俊明老师的要求,给以一个具体的例子。

C3v的乘法表(和D3的排列相同)

C3v

e

C3

C3^2

M1

M2

M3

e

e

C3

C3^2

M1

M2

M3

C3

C3

C3^2

e

M3

M1

M2

C3^2

C3^2

e

C3

M2

M3

M1

M1

M1

M2

M3

e

C3

C3^2

M2

M2

M3

M1

C3^2

e

C3

M3

M3

M1

M2

C3

C3^2

e

D3的乘法表(和C3v的排列相同)

D3

e

C3

C3^2

C2^’

C2^’’

C2^’’’

e

e

C3

C3^2

C2^’

C2^’’

C2^’’’

C3

C3

C3^2

e

C2^’’’

C2^’

C2^’’

C3^2

C3^2

e

C3

C2^’’

C2^’’’

C2^’

C2^’

C2^’

C2^’’

C2^’’’

e

C3

C3^2

C2^’’

C2^’’

C2^’’’

C2^’

C3^2

e

C3

C2^’’’

C2^’’’

C2^’

C2^’’

C3

C3^2

e

C3v的特征标(和D3的完全相同)

C3v

e

2C3

3M

A1

+1

+1

+1

A2

+1

+1

-1

E

+2

-1

0

D3的特征标(和C3v的完全相同)

D3

e

2C3

3C2

A1

+1

+1

+1

A2

+1

+1

-1

E

+2

-1

0

C3v的坐标操作矩阵(程序格式)

G(nT) = "e"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = 1

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 1

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

'TRxyz=C3(z)

nT = 2

G(nT) = "C3[z]"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = -1 / 2

TRxyz(nT, ni, 2) = Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = -Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

'TRxyz=C3^2

nT = 3

G(nT) = "C3^2[z]"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = -1 / 2

TRxyz(nT, ni, 2) = -Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

nT = 4

G(nT) = "Qv(zx30)"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = 1 / 2

TRxyz(nT, ni, 2) = Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

nT = 5

G(nT) = "Qv(zx150)"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = 1 / 2

TRxyz(nT, ni, 2) = -Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = -Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

nT = 6

G(nT) = "Qv(zx270)"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = -1

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 1

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

D3群的坐标操作矩阵(程序格式)

nT = 1

G(nT) = "e"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = 1

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 1

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

'TRxyz=C3(z)

nT = 2

G(nT) = "C3[z]"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = -1 / 2

TRxyz(nT, ni, 2) = Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = -Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

'TRxyz=C3^2

 

nT = 3

G(nT) = "C3^2[z]"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = -1 / 2

TRxyz(nT, ni, 2) = -Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 1

 

nT = 4

G(nT) = "C2(zx30)"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = 1 / 2

TRxyz(nT, ni, 2) = Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = -1

 

nT = 5

G(nT) = "C2(zx150)"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = 1 / 2

TRxyz(nT, ni, 2) = -Sqr(3) / 2

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = -Sqr(3) / 2

TRxyz(nT, ni, 2) = -1 / 2

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = -1

 

nT = 6

G(nT) = "C2(zx270)"

'Row 1

ni = 1

TRxyz(nT, ni, 1) = -1

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = 0

'Row 2

ni = 2

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 1

TRxyz(nT, ni, 3) = 0

'Row 3

ni = 3

TRxyz(nT, ni, 1) = 0

TRxyz(nT, ni, 2) = 0

TRxyz(nT, ni, 3) = -1

两个点群的操作矩阵(最后3个不同)

 

一个根据正则表示求不可约表示例子:

(选自俺自己的《坐标变换和函数变换》)

D3C3v)群的“排列组合”(置换表示)表示。

如果取一组6维基矢量,“横向”有48种满足正交条件的排列,3组(符号排列不同)的基矢量,有3×48144种。

 

基矢量排列:

'Row 1

MA(nX, kk(1), 1) = 1 / Sqr(6)

MA(nX, kk(1), 2) = 1 / Sqr(6)

MA(nX, kk(1), 3) = 1 / Sqr(6)

MA(nX, kk(1), 4) = 1 / Sqr(6)

MA(nX, kk(1), 5) = 1 / Sqr(6)

MA(nX, kk(1), 6) = 1 / Sqr(6)

'Row 2

MA(nX, kk(2), 1) = 1 / Sqr(6)

MA(nX, kk(2), 2) = 1 / Sqr(6)

MA(nX, kk(2), 3) = 1 / Sqr(6)

MA(nX, kk(2), 4) = -1 / Sqr(6)

MA(nX, kk(2), 5) = -1 / Sqr(6)

MA(nX, kk(2), 6) = -1 / Sqr(6)

'Row 3

MA(nX, kk(3), 1) = 2 / Sqr(12)

MA(nX, kk(3), 2) = -1 / Sqr(12)

MA(nX, kk(3), 3) = -1 / Sqr(12)

MA(nX, kk(3), 4) = 2 / Sqr(12)

MA(nX, kk(3), 5) = -1 / Sqr(12)

MA(nX, kk(3), 6) = -1 / Sqr(12)

'Row 4

MA(nX, kk(4), 1) = 2 / Sqr(12)

MA(nX, kk(4), 2) = -1 / Sqr(12)

MA(nX, kk(4), 3) = -1 / Sqr(12)

MA(nX, kk(4), 4) = -2 / Sqr(12)

MA(nX, kk(4), 5) = 1 / Sqr(12)

MA(nX, kk(4), 6) = 1 / Sqr(12)

'Row 5

MA(nX, kk(5), 1) = 0

MA(nX, kk(5), 2) = 1 / 2

MA(nX, kk(5), 3) = -1 / 2

MA(nX, kk(5), 4) = 0

MA(nX, kk(5), 5) = -1 / 2

MA(nX, kk(5), 6) = 1 / 2

'Row 6

MA(nX, kk(6), 1) = 0

MA(nX, kk(6), 2) = 1 / 2

MA(nX, kk(6), 3) = -1 / 2

MA(nX, kk(6), 4) = 0

MA(nX, kk(6), 5) = 1 / 2

MA(nX, kk(6), 6) = -1 / 2

以上基矢量,没有满足约化条件的排列。

 

'Row 1

MA(nX, kk(1), 1) = 1 / Sqr(6)

MA(nX, kk(1), 2) = 1 / Sqr(6)

MA(nX, kk(1), 3) = 1 / Sqr(6)

MA(nX, kk(1), 4) = 1 / Sqr(6)

MA(nX, kk(1), 5) = 1 / Sqr(6)

MA(nX, kk(1), 6) = 1 / Sqr(6)

'Row 2

MA(nX, kk(2), 1) = 1 / Sqr(6)

MA(nX, kk(2), 2) = 1 / Sqr(6)

MA(nX, kk(2), 3) = 1 / Sqr(6)

MA(nX, kk(2), 4) = -1 / Sqr(6)

MA(nX, kk(2), 5) = -1 / Sqr(6)

MA(nX, kk(2), 6) = -1 / Sqr(6)

'Row 3

MA(nX, kk(3), 1) = 2 / Sqr(12)

MA(nX, kk(3), 2) = -1 / Sqr(12)

MA(nX, kk(3), 3) = -1 / Sqr(12)

MA(nX, kk(3), 4) = -2 / Sqr(12)

MA(nX, kk(3), 5) = 1 / Sqr(12)

MA(nX, kk(3), 6) = 1 / Sqr(12)

'Row 4

MA(nX, kk(4), 1) = -2 / Sqr(12)

MA(nX, kk(4), 2) = 1 / Sqr(12)

MA(nX, kk(4), 3) = 1 / Sqr(12)

MA(nX, kk(4), 4) = -2 / Sqr(12)

MA(nX, kk(4), 5) = 1 / Sqr(12)

MA(nX, kk(4), 6) = 1 / Sqr(12)

'Row 5

MA(nX, kk(5), 1) = 0

MA(nX, kk(5), 2) = 1 / 2

MA(nX, kk(5), 3) = -1 / 2

MA(nX, kk(5), 4) = 0

MA(nX, kk(5), 5) = -1 / 2

MA(nX, kk(5), 6) = 1 / 2

'Row 6

MA(nX, kk(6), 1) = 0

MA(nX, kk(6), 2) = 1 / 2

MA(nX, kk(6), 3) = -1 / 2

MA(nX, kk(6), 4) = 0

MA(nX, kk(6), 5) = 1 / 2

MA(nX, kk(6), 6) = -1 / 2

 

"TC(","nX=",58

"X(1)=",1,"X(2)=",2,"X(3)=",4,"X(4)=",5,"X(5)=",6,"X(6)=",3

"TC(","nX=",58,"nT=",1,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

 

"TC(","nX=",58,"nT=",2,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,-.866,-.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,-.866,-.5,

 

"TC(","nX=",58,"nT=",3,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,.866,-.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,.866,-.5,

 

"TC(","nX=",58,"nT=",4,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,-1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,-1,

 

"TC(","nX=",58,"nT=",5,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,.866,.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,.866,.5,

 

"TC(","nX=",58,"nT=",6,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,-.866,.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,-.866,.5,

 

"TC(","nX=",67

"X(1)=",1,"X(2)=",2,"X(3)=",6,"X(4)=",3,"X(5)=",4,"X(6)=",5

"TC(","nX=",67,"nT=",1,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

 

"TC(","nX=",67,"nT=",2,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,-.866,-.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,-.866,-.5,

 

"TC(","nX=",67,"nT=",3,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,.866,-.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,.866,-.5,

 

"TC(","nX=",67,"nT=",4,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,-1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,-1,

 

"TC(","nX=",67,"nT=",5,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,.866,.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,.866,.5,

 

"TC(","nX=",67,"nT=",6,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,-.866,.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,-.866,.5,

 

'Row 1

MA(nX, kk(1), 1) = 1 / Sqr(6)

MA(nX, kk(1), 2) = 1 / Sqr(6)

MA(nX, kk(1), 3) = 1 / Sqr(6)

MA(nX, kk(1), 4) = 1 / Sqr(6)

MA(nX, kk(1), 5) = 1 / Sqr(6)

MA(nX, kk(1), 6) = 1 / Sqr(6)

'Row 2

MA(nX, kk(2), 1) = 1 / Sqr(6)

MA(nX, kk(2), 2) = 1 / Sqr(6)

MA(nX, kk(2), 3) = 1 / Sqr(6)

MA(nX, kk(2), 4) = -1 / Sqr(6)

MA(nX, kk(2), 5) = -1 / Sqr(6)

MA(nX, kk(2), 6) = -1 / Sqr(6)

'Row 3

MA(nX, kk(3), 1) = 2 / Sqr(12)

MA(nX, kk(3), 2) = -1 / Sqr(12)

MA(nX, kk(3), 3) = -1 / Sqr(12)

MA(nX, kk(3), 4) = 2 / Sqr(12)

MA(nX, kk(3), 5) = -1 / Sqr(12)

MA(nX, kk(3), 6) = -1 / Sqr(12)

'Row 4

MA(nX, kk(4), 1) = 0

MA(nX, kk(4), 2) = 1 / 2

MA(nX, kk(4), 3) = -1 / 2

MA(nX, kk(4), 4) = 0

MA(nX, kk(4), 5) = -1 / 2

MA(nX, kk(4), 6) = 1 / 2

'Row 5

MA(nX, kk(5), 1) = 0

MA(nX, kk(5), 2) = -1 / 2

MA(nX, kk(5), 3) = 1 / 2

MA(nX, kk(5), 4) = 0

MA(nX, kk(5), 5) = -1 / 2

MA(nX, kk(5), 6) = 1 / 2

'Row 6

MA(nX, kk(6), 1) = 2 / Sqr(12)

MA(nX, kk(6), 2) = -1 / Sqr(12)

MA(nX, kk(6), 3) = -1 / Sqr(12)

MA(nX, kk(6), 4) = -2 / Sqr(12)

MA(nX, kk(6), 5) = 1 / Sqr(12)

MA(nX, kk(6), 6) = 1 / Sqr(12)

 

 

"TC(","nX=",97

"X(1)=",1,"X(2)=",2,"X(3)=",3,"X(4)=",4,"X(5)=",5,"X(6)=",6

"TC(","nX=",97,"nT=",1,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

 

"TC(","nX=",97,"nT=",2,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,.866,-.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,.866,-.5,

 

"TC(","nX=",97,"nT=",3,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,-.866,-.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,-.866,-.5,

 

"TC(","nX=",97,"nT=",4,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,-1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,-1,

 

"TC(","nX=",97,"nT=",5,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,-.866,.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,-.866,.5,

 

"TC(","nX=",97,"nT=",6,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,.866,.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,.866,.5,

 

 

"TC(","nX=",113

"X(1)=",1,"X(2)=",2,"X(3)=",5,"X(4)=",6,"X(5)=",3,"X(6)=",4

"TC(","nX=",113,"nT=",1,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

 

"TC(","nX=",113,"nT=",2,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,.866,-.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,.866,-.5,

 

"TC(","nX=",113,"nT=",3,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,-.866,-.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,-.866,-.5,

 

"TC(","nX=",113,"nT=",4,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,-1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,-1,

 

"TC(","nX=",113,"nT=",5,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,-.866,.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,-.866,.5,

 

"TC(","nX=",113,"nT=",6,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,.866,.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,.866,.5,

"TC(","nX=",113

"X(1)=",1,"X(2)=",2,"X(3)=",5,"X(4)=",6,"X(5)=",3,"X(6)=",4

"TC(","nX=",113,"nT=",1,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

 

"TC(","nX=",113,"nT=",2,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,.866,-.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,.866,-.5,

 

"TC(","nX=",113,"nT=",3,")="

1,0,0,0,0,0,

0,1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,-.866,-.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,-.866,-.5,

 

"TC(","nX=",113,"nT=",4,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,1,0,0,0,

0,0,0,-1,0,0,

0,0,0,0,1,0,

0,0,0,0,0,-1,

 

"TC(","nX=",113,"nT=",5,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,-.866,0,0,

0,0,-.866,.5,0,0,

0,0,0,0,-.5,-.866,

0,0,0,0,-.866,.5,

 

"TC(","nX=",113,"nT=",6,")="

1,0,0,0,0,0,

0,-1,0,0,0,0,

0,0,-.5,.866,0,0,

0,0,.866,.5,0,0,

0,0,0,0,-.5,.866,

0,0,0,0,.866,.5,



https://blog.sciencenet.cn/blog-2321-227272.html

上一篇:如果是天真无邪,先学做事;如果是市侩庸俗,先学做人
下一篇:热门也罢,冷门也罢:没有基础,就是别人藤上的花
收藏 IP: 119.166.142.*| 热度|

1 刘全慧

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 09:39

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部