TickingClock的个人博客分享 http://blog.sciencenet.cn/u/TickingClock

博文

Nature Communications:植物表皮通过phyB-PIF4-生长素模块调控热形态发生

已有 4163 次阅读 2020-3-3 08:28 |个人分类:每日摘要|系统分类:论文交流

The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway


First author: Sara Kim; Affiliations: Korea University (高丽大学): Seoul, Korea

Corresponding author: Eunkyoo Oh


In plants, an elevation in ambient temperature induces adaptive morphological changes including elongated hypocotyls, which is predominantly regulated by a bHLH transcription factor, PIF4. Although PIF4 is expressed in all aerial tissues including the epidermis, mesophyll, and vascular bundle, its tissue-specific functions in thermomorphogenesis are not known. Here, we show that epidermis-specific expression of PIF4 induces constitutive long hypocotyls, while vasculature-specific expression of PIF4 has no effect on hypocotyl growth. RNA-Seq and qRT-PCR analyses reveal that auxin-responsive genes and growth-related genes are highly activated by epidermal, but not by vascular, PIF4. Additionally, inactivation of epidermal PIF4 or auxin signaling, and overexpression of epidermal phyB suppresses thermoresponsive growth, indicating that epidermal PIF4-auxin pathways are essential for the temperature responses. Further, we show that high temperatures increase both epidermal PIF4 transcription and the epidermal PIF4 DNA-binding ability. Taken together, our study demonstrates that the epidermis regulates thermoresponsive growth through the phyB-PIF4-auxin pathway.




在植物中,周边环境温度的升高会诱导适应性的形态改变,包括下胚轴的升长,该过程主要由bHLH转录因子PIF4所介导调控的。尽管PIF4在植物所有地上组织中表达,包括表皮、叶肉以及维管束,但是其在植物热形态发生时的组织特异性功能还不清楚。本文中,作者发现PIF4基因在表皮中特异性的表达会诱导较长的下胚轴,而在维管组织中的特异性表达则对于下胚轴的生长没有影响。转录组测序以及荧光实时定量-PCR分析显示生长素响应基因和生长相关基因能够被表皮中的PIF4高度激活,而不是维管中的PIF4。另外,表皮中PIF4或是生长素信号的失活,以及表皮phyB的过表达会抑制响应于热的生长,说明表皮中PIF4-生长素通路对于植株的温度响应是必需的。此外,作者发现高温会增加表皮中PIF4的转录和表皮中PIF4蛋白的DNA结合能力。综上,作者的研究揭示了表皮通过phyB-PIF4-生长素通路调控植物的热形态发生。




Background


热形态发生(thermomorphogenesis)指的是植物在响应周边环境温度升高但还未到达热胁迫范围时植物发生的形态和结构变化(Nature Plants; doi: 10.1038/nplants.2015.190)。通常表现为植物茎和下胚轴伸长、叶片偏下性生长(叶片向上侧卷)以及叶片变薄。已有的研究显示细胞色素互作引子PIF4是植物热形态发生的关键调控因子(PNAS; doi: 10.1016/j.cub.2009.01.046)。bHLH转录因子PIF4蛋白首先被鉴定为细胞色素信号通路的组分(Plant Journal, doi: 10.1046/j.1365-313x.2000.00810.x)。受光激活的phyB能够与PIF4蛋白互作,并磷酸化PIF4蛋白,从而促进由26S蛋白酶体通路介导的PIF4蛋白降解(EMBO Journal, doi: 10.1093/emboj/21.10.2441)。另外,高温能够诱导PIF4基因的表达,而PIF4蛋白能够激活生长素合成基因YUC8TAA1CYB79B2以及生长促进因子ATHB2PREs和LNGs,还有油菜素内酯合成相关基因的表达,促进下胚轴的生长(PNAS, doi: 10.1073/pnas.1110682108; PLoS Genetics, 10.1371/journal.pgen.1002594; Nature Cell Biology, doi: 10.1038/ncb2545; Frontiers in Plant Science, doi: 10.3389/fpls.2017.01320; EMBO Journal, doi: 10.15252/embj.201899552)。EC复合体(evening complex)包含ELF3、ELF4和LUX三个蛋白(Nature; doi: 10.1038/nature10182),可以直接结合到PIF4基因的启动子区并抑制PIF4基因的表达;而有研究显示高温能够解除EC复合物对于PIF4基因的抑制,从而PIF4基因响应于温度升高而表达水平上调,激活下游的基因(Nature Plants, doi: 10.1038/nplants.2017.87)。除热形态发生外,PIF4基因还参与了广泛的植物发育和环境响应,包括光形态发生(PNAS, doi: 10.1073/pnas.1813171115)、避光响应(Plant Journal, doi: 10.1111/j.1365-313x.2007.03341.x)、下胚轴向重力性(PNAS, doi: 10.1073/pnas.1011066108)、向光性(Plant Cell, doi: 10.1105/tpc.113.112417)、叶片衰老(Molecular Plant, doi: 10.1093/mp/ssu109; Nature Communications, doi: 10.1038/ncomms5636)以及气孔发育(Current Biology, doi: 10.1016/j.cub.2018.02.054; Current Biology, doi: 10.1016/j.cub.2008.12.046)。



通讯Eunkyoo Oh (https://koreauniv.pure.elsevier.com/en/persons/eunkyoo-oh)



doi: https://doi.org/10.1038/s41467-020-14905-w


Journal: Nature Communications

Published date: February 26, 2020

085455gdrco4fe6dntl9e6.jpg



https://blog.sciencenet.cn/blog-3158122-1221496.html

上一篇:Nature Biotechnology:植物双碱基编辑器介导的基因定向、随机诱变
下一篇:Current Biology:金鱼草多细胞毛状体模式演化的遗传基础
收藏 IP: 121.225.190.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-8 21:40

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部