|
DAY 2
K1‐Selective Laser Melting of magnesiumalloys
LJauer1, B Jülich1,M Voshage2, W Meiners1
1FraunhoferInstitute for Laser Technology ILT, Aachen; 2Chairfor Laser Technology, Aachen
University,Germany
Selectivelaser melting
Individualizationfor free
Complexityfor free
Weightreduction for free
Chances
Design ofscaffold-like structures
Optimizing ingrowth/degradation process
Enhanced vasculaization for fast removal of degradation products
Reduced bulk material(corrosion products)
Adaption of intial mechanical properties
Patientspecific adaption of surface contour
Challengens
Lowtemperature difference between melting and vaporation
Smoke during processing
Absorption of laser radiation
Reactive residue
Change of alloy composition
Oxidation
Oxide layeron powder particles
Wettingbehavior
Sensitive toprocess atmosphere
Affinity tosintering
Selectivelaser melting of AZ91
2X4X40mm 3point flexural strength
Horizontal
Vertical
Compared tocast, machined from ingot
Machining totest specimen B4X20 to DIN 50125
Tensilestrength depend on parameter set
Selectivelaser melting of WE43
Conventialparameters
Adaptedparameters
Postprocessed (particle blasting)
Cleaning bychemical etching
Micro-CT formetal volume determination before and after corrosion
Corrosionlayer and remaining metals
Application:下颌骨缺损
SLMpartproperties
Uniquemicrostructure
Internalstresses
Powder basedprocess
Stochasticsurface roughness
Pore voidspossible
Significantlyincreased surface
Oxideparticles and varying alloy composition
Possibleinfluence
Corrosion(bulk,stress, intial)
Mechanical properties
Postprocessing
Heattreatment
Hot isostaticprecessing (HIP)
Surfacetreatment
Particleblasting
Outlook
Processimprovements
Detailresolution
Surfaceroughness
Postprocessing
Heattreatment
HIP
Coating
Performance
O1‐Selective laser melting of pure Fe andpure Zn for biodegradable implants
MMontani1, AG Demir1,E Mostaed1, M Vedani1,B Previtali1
1Departmentof Mechanical Engineering, Politecnico di Milano, Italy
Fe metal
High meltingtemperature
High thermalgradient and fast heating and cooling rate
Nonequllibrium
Zn metal
Low meltingtemperature, short gap between melting and vaporation temperature
Zn losses,porosity
To investigatethe feasibility area of process parameters for Fe and Zn in terms of
Porositycreation mechanism
Mechanical property
IPG YLR-1000
Fe 41+- 19micrometer, Zn 42+-18 micrometers
Laser powder150-300W
Scan speed150-300 mm/s
Hatchdistance 100-130 micrometer
Layerthickness 50-100 micrometer
Spot diameter213 micrometer
Gas argon20nl/min
Low fluencycauses high lack of melting porosity
Zn have bothregions: LoM and EV
Thecontribution of the vaporation is important
SLM of pureZn
behaveddifferently since it is affected by excessive vaporation
does notallow dense structure
O2‐Fabrication of porous pure magnesiumsheet by selective laser melting
NSato1, K Hanada1,T Shimizu1, S Nakano1
1NationalInstitute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Porous ductileTi6Al4V can be fabricated by SLM
Mater SciAppl 5(2014) 475-483
Fiber laser
Wave length1064nm
Spot size 175micometer
Powder 117micometer
Ar gas
TemperatureRT
Laser powder40-360W
Scanningspeed 100-1000mm/s
Scanninginterval 0.1 mm
Scanningstrategy zigzag
Sheet size10X10 mm
Density=0.492g/cm3
Porosity=72%
Surface ofporous sheet covered angular MgO particle, and metal Mg was observed under theMgO.
Bendingstrength and springback of porous Mg sheet ware 2.5MPa and 6.3%, respectively.
The weightreduction rate is 1.1mm/year
O3‐Safety recipient for controlledselective laser melting of magnesium
SBöhringer1, A Kessler1,J Rüegg1, R Schumacher1,E Schkommodau1, M de Wild1
1Universityof Applied Sciences Northwestern Switzerland, School of Life Sciences,Institute for
Medicaland Analytical Technologies, Muttenz, Switzerland
Functional latticestructure
Risk duringhandling the Mg powder
AZ91 powder
SOP1‐Comparison of additive manufacturedporous magnesium and titanium implants using primary osteoblasts and primarystem cells
JMatena¹, M Gieseke², M Teske³, S Petersen³, A Kampmann⁴, I Linke⁴, L Roland¹, MGrau¹,
HMurua Escobar5, NC Gellrich⁴, H Haferkamp6,I Nolte¹
¹Universityof Veterinary Medicine Hannover Foundation, Small Animal Clinic; ²Laser Zentrum
Hannovere.V; ³Rostock University Medical Center, Institute for Biomedical Engineering;
⁴HannoverMedical School, Department of Oral and Maxillofacial Surgery; 5Universityof
Rostock,Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine; 6Leibniz
UniversitaetHannover, Institut fuer Werkstoffkunde, Hannover, Germany
Hybridimplant
PCL-Mg
Matena et al.2015 Int J Mol Sci
SOP2‐Fabrication of zinc alloy minitubes forbiodegradable stent applications
EMostaed1, M Sikora‐Jasinska1,2, S Lofferdo1,D Mantovani2, M Vedani1
1Departmentof Mechanical Engineering, Politecnico di Milano, Milan, Italy; 2Lab.for
Biomaterials& Bioengineering (CRC‐I), Dept. Min‐Met‐Materials Engineering, LavalUniversity,
QuébecCity, Canada
Fe Zn Mg
Strength desirable poor poor
Ductility desirable desirable poor
Degradation low desirable fast
Zn-0.15Mg,Zn-0.5Mg Zn-1Mg Zn-0.6Al Zn-1Al
Interruptedtube extrusion
SOP3‐Absorbable filament design with three‐fold device function
JE Schaffer1, A J Griebel1
1FortWayne Metals Research Products Corp., Fort Wayne, IN, USA
Temporary replacementof permanent stiffness
Temporary replacementof permanent force
PneumRX LVRcoil
Absorbableswitch, SMA expansion
Freeexpansion ratio can exceed 20:1
O4‐Magnetron sputtered, structured ironbased foils as iodegradable implant material for minimal invasive vascular surgeryapplications
TJurgeleit1, E Quandt1,C Zamponi1
1Chairfor Inorganic Functional Materials, Inst. for Materials Science, Univ. of Kiel,Germany
O5‐Biodegradable magnesium alloy wirespreparation and application study
LLTan1, JL Li1,FF Liu2, K Yang1
1Instituteof Metal Research, Chinese Academy of Sciences, Shenyang; 2DongGuanEontec Co.,
DongGuan,China
Suture
staple
Mg-Zn-Nd
EMg12Nd<EMg 0.06V
Mg-2,4,6Zn-0.5Nd
Mg-6Zn-0.5NdUTS:313MPa 17.8%
Tensile forceafter knotted
Theelongation is important for the alloy for suture material
U-shapestaple
SOP8‐Tailoring the bioactivity of AZ31 alloyby nanofibrous PCL/HA composite coatings
for degradable metallic implantapplications
THanas1,2, TS Sampath Kumar1
1MedicalMaterials Laboratory, IIT Madras, Chennai; 2Schoolof Nano Science and Technology,
NITCalicut, Calicut, Kerala, India
SOP5‐Microstructure and mechanicalproperties of thin nanostructured hydroxyapatite coating deposited on thesurface of AZ31 magnesium alloy via RFmagnetron sputtering at a substrate bias
RSurmenev1,2, M Surmeneva1,T Mukhametkaliyev 1, A Tyurin3,T Pirozhkova3, R Stolyarov3
1NationalResearch Tomsk Polytechnic University, Tomsk; 2FraunhoferInstitute for
InterfacialEngineering and Biotechnology (IGB); 3 G.R.Derzhavin Tambov State University
700nm thickcoating, 1500nm thick coating
HA Increasethe corrosion
SOP6‐Design and manufacture of commerciallyviable absorbable magnesium alloys
RThornton1, I Syed1,P Lyon1
1MagnesiumElektron, Manchester, UK
High strengthnormally established by large alloying additions
Lower thermalconductablity, high temperature gradient, high residual stress
Alloys mustbe designed to have acceptable processing tolerance
O6‐Cold‐drawn Mgalloy composite wires minimize risk through galvanic coupling
AJGriebel1, JE Schaffer1
1Research& Development, Fort Wayne Metals Research Products Corp., Fort Wayne, IN,USA
Prematurefracture, overload, fatigue, severe localized corrosion, corrosion-assistedfracture
Mg-DFT-(Fe,Zn.Mg)
SheathMg-4Li, Core Zn 99.99%
LAEX6410-DFT-Fe
AZ31-DFT-LAEX6410
X-rayparameters: 125kVp, 0.42mAs 20in
Propermaterial selection has the potential to control the corrosion sequence.
O7‐New kind of bio‐functional Mg‐Cu alloy with enhancedosteogenesis, angiogenesis and long‐actingantibacterial performance
CLiu1, XK Fu2,Y Zhao 2, LL Tan1,Q Zhang3, HB Pan2,K Yang1
1Instituteof Metal Research, Chinese Academy of Sciences, Shenyang; 2ShenzhenInstitutes of Advanced Technology; 3ChinesePLA General Hospital, Beijing, China
Mg-Cu(0.05,0.2, 0.5wt%)
Mg2Cuincrease with the increase of Cu addition
SOP7‐Study on the preparation and propertiesof Mg/PLA composite for bone screw
JNi1, C Zhao1,H Wu1, Y Chen1,W Chen1, F Zhang1,Q Xia1, S Zhang2,X Zhang1
1Schoolof Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai;
2SuzhouOrigin Medical Technology Co. Ltd., Jiangsu, China
Mg 50-100micrometers
PLA-2%,5%Mgcomposite
Blendingdisperison and heat fusion
SOP9‐Silane coatings for surfacemodification of magnesium alloy
SAgarwal1, 2, J Curtin2,B Duffy1, S Jaiswal1
1Centrefor Research in Engineering and Surface Technology, FOCAS Institute; 2Schoolof Food
Scienceand Environmental Health, Cathal Brugha Street, DIT, Ireland
下午
K2‐Phase Diagrams: Which information’s you can get from them for alloy and process design?
NHort1, CL Mendis1,P Maier2
1MagnesiumInnovation Centre, Helmholtz‐Zentrum Geesthacht, Geesthacht; 2University of
AppliedSciences Stralsund, Stralsund, Germany
Binary phasediagram
To get ridoff eutectic structures, and concentration gradient, heat treatment is done.
A range oftemperature between Te and Tsouvous
Ternary phasediagram
SOP10‐Microstructure of as‐cast and T4 heat‐treated Mg2Gd‐x(Ag,Ca) ternary alloys
Y.Lu1, Y. Huang1,F. Feyerabend1, R. Willumeit‐Römer1,K. U. Kainer1, N. Hort1
1Instituteof Materials Research, Helmholtz‐Zentrum Geesthacht, Max‐Planck‐Strasse 1,
21502Geesthacht, Germany
Mg-2Gd-!Ag,2Ag, 0.4Ca, 0.8Ca
T4 heattreatment (510oC 48h) effectively reduce the content of the intemetallic phase.
SOP11‐Mg–Zn–Ca alloys processed by equal channel angular pressing
MKrystian1, M Bammer1,A Ostertag2, J Hofstetter3,S Beck4, B Mingler1
1BiomedicalSystems, Health & Environment Dept, AIT Austrian Institute of Technology
GmbH,Wr. Neustadt; 2Kühr GmbH, Wr. Neudorf, Austria; 3Laboratoryof Metal Physics and
Technology,Dept of Materials, ETH Zurich; 4SynthesGmbH, Oberdorf, Switzerland
Less Zn-richintermetallic particle, which acts as cathodic sites
23MPa perwt.%Zn, 6.2 solubility, maximum solid solution hardening 120MPa
MgZn5Zr0.5Ca0.25Mn0.15
MgZn5Yb2Zr0.5Ca0.25Mn0.15
SOP12‐Variations in degradation of ultrahigh‐purity MgZnCa alloys by thermal treatment
JDCao1, J Hofstetter1,M Cihova1, WW Trinh1,B Mingler2, PJ Uggowitzer1,JF Löffler1
1Laboratoryfor Metal Physics and Technology, Department of Materials, ETH Zurich, 8093
Zurich,Switzerland`2Biomedical Systems, Health &Environment Department, AIT Austrian
Instituteof Technology GmbH, 2700 Wr. Neustadt, Austria
Simulataneouslyhigh strength, ductility, and slow degradate rate
1 generationMg-5Zn-0.25Ca,
purfication
=>
2 generationUltrahigh purity(XHP*) ZX50
Reduction ofZn suggests change in electrochemical property.
=>
3 generationXHP Mg-1Zn-0.3Ca
O8‐In situ synchrotron radiationdiffraction during solidification of Mg4Y2Nd and Mg4Y2Ag1Nd alloys
GSzakács1, CL Mendis1,B Wiese1, D Tolnai1,A Stark1, KU Kainer1,N Hort1
1Instituteof Materials Research, Helmholtz‐Zentrum Geesthacht, Germany
O9‐Can defects improve properties ofmetallic biomaterial?
BWiese1, CL Mendis1,KU Kainer1, N Hort1
1MagnesiumInnovation Centre, Helmholtz‐Zentrum Geesthacht, Germany
0D defect
Amount andtype of alloy additions
Fastundercooling during solidification
1D defect
Rolling,extrusion, wire drawing, bending, etc.
2D defect
Casting,extrusion, wire drawing, heat treatment
O10‐Planar defects in magnesium alloys
BSmola1, I Stulíková1,T Kekule1, M Vlach1
1Facultyof Mathematics and Physics, Charles University, Prague, Czech Republic
WZ21
Stackingfault energy in Mg-Y-Zn alloys 0.9-1.8mJ/m2
Dislocationsplitting
Gamma’(MgZnY)
Gamma(stable)
Preferential corrosionalong planar defects, corrosion test in EMEM medium after 5 days
SOP13‐Investment casting of biodegradable Mg‐Ca‐Zn alloys
NAZumdick1, SF Fischer2,P Weiß2, A Bührig‐Polaczek2,D Zander1
1Chairof Corrosion and Corrosion Protection; 2FoundryInstitute, RWTH Aachen, Germany
High geometricfreedom
High surfacequality
Costeffective
SiO2,CaO andSO3, mold
450 degree C,T mold, smooth plates
650 degree C,T mold, severe reaction
SOP14‐Effect of composition on themicrostructure and properties of candidate Mg‐Si‐Sr alloys for resorbable material applications
AGil‐Santos1, G Szakacs2,I Marco1, N Moelans1,N Hort2, O Van der Biest1
1Departmentof Materials Engineering, KU Leuven, Leuven, Belgium; 2MagnesiumInnovation Centre (MagIC), Geesthacht, Germany
At.%
Mg-0.33Si-0.14Sr
Mg-0.41Si-0.07Sr
Mg-0.25Si-0.07Sr
Mg-0.11Si-0.07Sr
Mg-0.12Si-0.02Sr
Mg-0.25Si-0.07SrMg-0.11Si-0.07Sr optimized mechanical and degradation property. These alloyscontain less ternary intermetallic and Mg2Si.
SOP15‐Effect of grain size, extrusion ratioand extrusion temperature on the texture development in Mg‐xZr alloys (x=0~1 wt. %)
SYarmolenko1, Z Xu1,R Kotoka1, S Neralla2,J Sankar1
1NSF‐ERCCenter for Revolutionizing Metallic Biomaterials, North Carolina A&T State
University,Greensboro, NC USA. 2Jet‐Hot, Inc.,Burlington, NC, USA
0, 0.22, 0.41,0.56 wt%Zr
Texture formation:optimal grain size of pure Mg- 100 micrometers
O11‐Investigation of impurity levels ofbiodegradable Mg‐materials and their influence onbiocorrosion
MWolff1, JG Schaper2,M Dahms2, N Rüder3,C Vogt4, T Ebel1,F Feyerabend1, R Willumeit‐
Römer1,T Klassen5
1Helmholtz‐ZentrumGeesthacht, 2University of Applied Sciences, FHFlensburg, 3Technical
UniversityHamburg Harburg TUHH, 4LeibnitzUniv. Hannover, 5Helmut SchmidtUniv.,
Hamburg,Germany
Introduction ofan additional parameter Rmax (depth of surface roughness)
e.g. use forconfocal microscopy method(ISO25178)
Unaffectedsurface area, homogeneous surface corrosion, pitting corrosion with ferriticparticle inside.
Tolerance
Fe in pureMg(as-cast) 150-180 ppm
Fe in purewrought Mg : 2-5ppm
CriticalFe/Mn weight ratio: 0.01-0.032 ASTM-B94 standard
SOP16‐Tailored MG‐ZN‐CA alloy for biomedical application
HJRoh1,2, HS Han 2,JW Lee4, HK Seok 2,3,DH Kim 1, YC Kim 2,3
1Nanostructural Material laboratory, Yonsei University; 2Centerfor bio‐materials, Korea
Instituteof Science and Technology; 3Departmentof Bio‐medical Engineering, University of
Science& Technology; 4KookminUniversity, Korea
Mg-2Zn-0.1Ca:Ca2Mg6Zn3
Mg-2Zn-0.3Ca:Mg2Ca(Zn)
Mg-2Zn-0.1Cashow optimal mechanical and corrosion properties.
SOP17‐Properties of deformed Mg‐Gd alloys
IStulíková1, B Smola1,J Čížek1, M Vlček1,F Lukáč1
1Facultyof Mathematics and Physics, Charles University. Prague, Czech Republic
Mg-5, 10,15Gd
5 rotation byHPT 400 degree C 10-3 S-1 A~580%
SOP18‐Tensile and microstructural propertiesof annealed Mg10Gd‐alloy wires
MBartosch1, H Peters1,B Schmitt1, F Berger1,N Hort2, F Witte3
1DeutschesHerzzentrum Berlin, 2 Helmholtz‐ZentrumGeesthacht, 3 Julius Wolff Institut,
Charité.Berlin, Germany
Macjine andhand drawing
From 6mm to0.4mm
400 and 450degree C time 30, 45, 60, 90 min
As-drawn 0.7%elongation
As-drawn: distortedelongated grain
HT: Isotropicgrain
HT: Bimodalgrain
SOP19‐Shape optimization for a biodegradablemagnesium alloy stent using computer simulation
CXChen1,2, W Wu2,F Migliavacca2, GY Yuan1,WJ Ding1
1NationalEngineering Research Center of Light Alloy Net Forming and State Key Laboratory
ofMetal Matrix Composite, Shanghai Jiao Tong University, China; 2Dept.of Chemistry,
Materialsand Chemical Eng. ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
Problems forMg stent
Crimping andexpansion
Contactitself
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-21 20:25
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社