一些不起眼的基本结果, 却能派上大用场. 比如,
\[\ln (1+x)\sim x, \sin x\sim x, \tan x\sim x, e^x-1\sim x(x\to 0). \]
例1 求极限
\[\lim_{x\to +\infty}x^2 \left((1+x)^{\frac{1}{x}}-x^{\frac{1}{x}}\right).\]
解 注意到
\[(1+x)^{\frac{1}{x}}-x^{\frac{1}{x}}=x^{\frac{1}{x}}\left(\left(1+\frac{1}{x}\right)^{\frac{1}{x}}-1\right)
\sim\ln \left(1+\frac{1}{x}\right)^{\frac{1}{x}}\sim\frac{1}{x^2}(x\to +\infty),\]
故
\[\lim_{x\to +\infty}x^2 \left((1+x)^{\frac{1}{x}}-x^{\frac{1}{x}}\right)=1.\]
例2 设$a_1>0$, $p>0$,
\[a_{n+1}=\frac{a_n}{1+a_n^p},n=1,2,\ldots.\]
证明
\[a_n\sim\left(\frac{1}{pn}\right)^{\frac{1}{p}}(n\to\infty).\]
证 显然$\{a_n\}$严格递减地收敛于0. 注意到
\[\lim_{n\to\infty}\left(\frac{1}{a_{n+1}^p}-\frac{1}{a_n^p}\right)=\lim_{n\to\infty}\frac{(1+a_n^p)^p-1}{a_n^p}=
\lim_{n\to\infty}\frac{p\ln (1+a_n^p)}{a_n^p}=p,\]
根据Stolz定理得到,
\[\lim_{n\to\infty}\frac{\frac{1}{a_n^p}}{n}=\lim_{n\to\infty}\left(\frac{1}{a_{n+1}^p}-\frac{1}{a_n^p}\right)=p,\]
从而
\[a_n\sim \left(\frac{1}{pn}\right)^{\frac{1}{p}}(n\to\infty).\]
https://blog.sciencenet.cn/blog-116820-1095237.html
上一篇:
测试一下LaTeX下一篇:
哈代的名言