tianrong1945的个人博客分享 http://blog.sciencenet.cn/u/tianrong1945

博文

量子英雄传-34-弦的游戏规则 精选

已有 7442 次阅读 2021-10-17 08:13 |个人分类:系列科普|系统分类:科普集锦

弦的游戏规则

 

34 九维空间大小迥异

     开弦闭弦规律不同

 

上一篇所介绍的卡拉比—丘流形,因拥有特殊的拓扑性质,成为解释弦论中额外6维紧致空间的核心。然而,6维卡拉比—丘流形的拓扑形态众多,几何结构非常复杂,难以直观想象。因此,一般而言,在以解释物理图像为重点,无需细究“额外6维空间”的数学性质时,我们使用紧致化中最简单的6维环面,来代替复杂的卡拉比—丘流形。

 

·平坦环面

 

说到环面,我们经常想到的是甜甜圈形状,但是拓扑学家们偏向于一种以更抽象的方式来描绘的环面。在图34-1a中,我们将它画成一个长方形。

 

34-1:平坦(2维)环面形成过程

 

a的方形中,“A”箭头所对应的两条边将会被粘合在一起,“B”箭头所对应的两条边也将会被粘合在一起。也就是说,如同科幻片中见到的那样:当你从长方形上方的A边走出长方形时,你会在下方的A边上出现;当你穿过长方形右边的B时,你会在左方的B边现身。

 

如此而形成的二维环面,被称为抽象环面,或平坦环面(Flat Torus1,它的形状不同于甜甜圈。事实上,如图34-1所示:两条A边粘合后形成柱面,这第一步没有任何问题。然而,第二步,当我们将图c柱面的两端(B) 粘合起来后,我们不可能得到真正甜甜圈的形状,即图34-1d所示的那种平滑无皱褶的曲面。这里有一个深层的原因,因为抽象环面来自于一个平坦的长方形,本质上是平坦的,(内蕴)曲率为零。而通常所见的甜甜圈的内蕴曲率不为零。抽象环面与甜甜圈的内蕴性质不一样。

 

尽管抽象环面不能被平滑地嵌入三维空间中,却很容易依赖想象来理解它的拓扑性质。

 

最简单的环面是1维的圆圈,图34-1构建的是二维环面,其方法可以推广到更高的维度。例如,设想一个长方体,它有六个面:(A,A’)(B,B’)(C,C’),两两互相平行。想象将AA’粘合在一起,BB’CC’也粘合在一起,便构成了一个3维的抽象环面。同样的方法可以构建任意n维的抽象环面。

 

·弦在时空中的(经典)运动

 

卡拉比—丘流形或者抽象环面,作为6维紧致空间,加上我们熟悉的、大范围尺度上展开了的4维时空,构成弦论的10维时空,是“弦”活跃的舞台。也就是说,弦论中有两种舞台:4维时空大舞台和6维的小舞台。

 

除了舞台和演员之外,还得有剧本,即游戏规则。对物理学而言,游戏规则又有量子及非量子(经典)之分。

 

弦在空间的运动规律可以从点粒子的运动规律推广而来。首先我们看看如何将经典点粒子规则推广到经典弦。

 

牛顿力学中,点粒子的轨迹是3维空间中随时间变化的一条线。相对论中,将粒子在4维时空中运动的轨迹称为“世界线”,见图34-2a。弦论中,0维的点粒子被(更小的)1维的弦运动代替了。弦在时空中运动的轨迹则用轨迹面代替,称之为“世界面”,如34-2b所示。更进一步,如果运动的实体是二维的(膜),时空中的运动轨迹便叫做“世界体”,如图34-2c所示。

 

34-2:粒子vs弦(或膜)

 

相对于无大小的点粒子数学模型而言,弦模型有许多优越性,解决了点粒子的无穷大问题是其一。

 

在经典电子学中就存在无穷大困难。经典物理中,可以将电子当作一个半径r的小球,电子的质量公式为 m = e2/rc2。当r趋近于0时,质量成为无穷大。最后,经典电子论通过引进电子的有限半径(非点粒子)免除了这一发散。在量子场论中,则需要使用重整化的方法消除无穷大,但引力场不能重整化,从而使它不能被包括到标准模型中。

 

然而,对弦论而言,重整化变得无关紧要,因为弦不是点,弦有尺寸大小,自然而然地去除了点粒子的发散问题。

 

·量子的弦和相互作用

 

34-2中点粒子和弦运动的类比,很容易推广到其它情形,包括量子弦,及相互作用的情绪。也就是说,点粒子时的线,在弦论中则用带状曲面(开弦)或管道(闭弦)面来代替。

 

例如,图34-2a中的世界线,是经典粒子在4维时空中的轨迹。两个固定点之间的经典路径只有一条,但如果考虑量子力学,一个粒子从AB的路径有无穷多条,经典路径(蓝色线)只是其中之一条(见图34-3a)。图34-3b显示的弦论中的情况也类似:除了蓝色代表的经典世界面之外,所有可能的每一个世界面都对计算弦A到弦B的量子概率幅有贡献。

 

34-3:路径积分(量子化)

 

根据量子场论,时空中的粒子,总是在不断地湮灭,又不断地产生。产生和湮灭一类的相互作用现象用各级费曼图来进行描述和计算,弦论也不例外,只是如上所述,相应的线段需要用“面”来替代而已,见图34-4

 

34-4:弦论中弦与弦的相互作用和费曼图

 

从场论的角度,比较标准模型来说,弦论的另一个优点是更为简化。量子场论在数学上可以有无穷多种,因此可对应于无穷多种粒子。比如说,对应于标准模型的61种基本粒子,便有61种不同的量子场论。而在弦论中,只需要一种描述“弦”的量子场论就可以了,由此从概念上得以简化。

 

·膜-弦概念的扩展

 

在图34-2c中,我们已经提及“膜”的概念,它最早来自于与弦论相关的超引力理论。如今的弦论中经常谈到的膜,有p膜和D膜。

 

称为p膜(p-brane)的物理实体,是将点粒子的概念推广至1维、2维、以及更高维度而产生的。举例来说,点粒子可以被视为零维的膜,而弦则可视为一维的膜,通常意义上的“膜”是二维的。此外,也可能存在更高维的膜。

 

p膜是动力学物体,在时空中行进时,所根据的是量子力学的规则。它们带有质量与其他性质,例如电荷。一个p膜的行进在时空中扫出了(p+1)维度的体积,称之为世界体积(worldvolume)如图34-2c所示。

 

另一类膜叫做D膜,表示符合狄利克雷(D)边界条件的膜。D膜是弦论中一类很重要的膜,与开弦在时空中的运动有关。当开弦在时空中行进时,开弦的端点必须在D膜上。对D膜的研究导出了与对偶性有关的重要成果,下一篇的文章中会给以简单介绍。

34-5D膜上的开弦

 

·弦在紧致空间中运动的特殊性

 

本文开始时曾经提到过:弦论的空间分为伸展的大空间和卷曲的小空间。使用前面文章“电缆线上蚂蚁”的比喻:我们看见的电缆线是1维大空间,而线上的蚂蚁则能看见另一维卷曲的圆圈(小空间)。

 

弦论中的大时空是4维的,卷曲紧致的小空间是6维的。4维和6维都无法用平面图像显示出来,但是,为了解释概念的方便,我们将弦论的10维时空简化为图34-6a的长长圆柱体,看起来像是蚂蚁眼中的2维电缆线。用沿着电缆线方向的那1维,代表4维大时空;用电线的截面圆圈,代表6维小空间。如此比喻的话,10维时空中的开弦闭弦,就是小蚂蚁了。

 

也就是说,图34-6中无限延伸的x方向代表我们熟知的4维时空,y方向卷曲的小圆代表6个额外小维度。这个6维空间可以是卡拉比-丘流形,也可以简单地理解成本篇所说的6维抽象环面。对6维环面而言,图中的R就不是1个数值而应该被理解为代表6个数值了。

 

34-6:弦论空间和“绕数”的示意图

 

从点粒子到弦论,并非所有物理量都有相应的类比物,弦的特殊性会产生某些点粒子模型中没有的性质,我们举闭弦在紧致空间中的“绕数”2为例,它就是4维时空的标准模型中没有的物理量。

 

如图34-6所示,10维时空分成一大一小,其中弦的运动也可以从这两个方面的运动来讨论。也就是说:弦,除了在大的四维时空中运动外,还能绕着紧致空间运动。闭弦的这种运动更是尤其特殊,因为闭弦可能有一种特别的状态,就是绕在某一个(或多个)紧致的维度上,可以绕上1圈、2圈、或者很多(N)圈,见图34-6b。于是,闭弦便多了一种量子态,用一个新的量子数表征这个量子态,叫做“绕数”。

 

开弦没有绕数的概念,因为开弦在拓扑上等效于一个点,“绕”不起来。

 

当缠绕在紧致维度上的闭弦发生相互作用时,总绕数是一个守恒量。

 

34-6b中的上面一个图,举出了绕数w=0+2+1-1的例子,下面一图表示了一个闭弦的变化(等效)过程(从左到右),可用以简单地说明绕数守恒:开始时,闭弦只是放在圆柱上,没有绕圈,因此w=0。闭弦上的点AB接近后相互作用,成为w=1 w=-1的两个闭弦,但绕数之总和仍然为0

 

下一篇:对偶性简介

 

参考资料:

 

1https://en.wikipedia.org/wiki/Torus

2https://en.wikipedia.org/wiki/Winding_number


××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

本人的科普视频:YouTube:

天文航天:“談天說地”  https://www.youtube.com/playlist?list=PL6YHSDB0mjBLmFkh2_9b9fAlN7C4618gK

趣味数学:數學大觀園  https://www.youtube.com/playlist?list=PL6YHSDB0mjBJifi3hkHL25P3K9T-bmzeA

也发在微信公众号“天舸”上(微信号:gh_e01fc368fe31):

天舸.jpg

              长按/扫一扫二维码,敬请关注我的微信公众号天舸” !

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××




https://blog.sciencenet.cn/blog-677221-1308237.html

上一篇:精选量子英雄传-33-卡拉比-丘空间
下一篇:量子英雄传-35-T对偶和镜流形
收藏 IP: 67.175.48.*| 热度|

6 蒋敏强 王安良 郑永军 李毅伟 李振乾 王沪兵

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-25 07:39

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部