|||
这一讲,林老师从4个不同的角度对机器学习算法做分类。
1、Learning with Different Output Space $\mathcal{Y}$
binary classification: $y = \{+1, -1\}$;
multiclass classification: $y = \{1, 2,\cdots ,K \}$;
regression: $y = \mathcal{R}$;
structured learning: $y = $ structures;
......and a lot more!!
2、Learning with Different Data Label $y_n$
supervised: known all labels $y_n$;
unsupervised: unknown labels;
semi-supervised: some labels known;
reinforcement: implicit yn by goodness ($\tilde{y_n}$);
......and more!!
3、Learning with Different Protocol $f \Rightarrow (x_n; y_n)$
Protocol $\Leftrightarrow$ Learning Philosophy
batch: "duck feeding" (learn everything at the same time);
online: "passive sequential" (每次学习一个样本);
active: "question asking" (sequentially)
—query the $y_n$ of the chosen $x_n$.
Active: improve hypothesis with fewer labels (hopefully) by asking questions strategically.
除此之外,还有min-batch,即介于batch和online之间,每次选取一小部分数据进行学习。
4、Learning with Different Input Space $\mathcal{X}$
concrete: sophisticated (and related) physical meaning;
raw: simple physical meaning;
abstract: no (or little) physical meaning;
......and more!!
concrete features: each dimension of $X\in R^d$ represents "sophisticated physical meaning".
concrete features 是指能够反映当前机器学习任务间最本质区别或联系的特征。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 07:04
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社