不动如山分享 http://blog.sciencenet.cn/u/hustliaohh 脚踏实地,稳步向前

博文

第三讲 Types of Learning

已有 2958 次阅读 2014-1-10 17:16 |个人分类:科研道路|系统分类:科研笔记| 机器学习, 分类

这一讲,林老师从4个不同的角度对机器学习算法做分类。

1、Learning with Different Output Space $\mathcal{Y}$

  • binary classification: $y = \{+1, -1\}$;

  • multiclass classification: $y = \{1, 2,\cdots ,K \}$;

  • regression: $y = \mathcal{R}$;

  • structured learning: $y = $ structures;

  • ......and a lot more!!

2、Learning with Different Data Label $y_n$

  • supervised: known all labels $y_n$;

  • unsupervised: unknown labels;

  • semi-supervised: some labels known;

  • reinforcement: implicit yn by goodness ($\tilde{y_n}$);

  • ......and more!!

3、Learning with Different Protocol $f \Rightarrow (x_n; y_n)$

  Protocol $\Leftrightarrow$ Learning Philosophy

  • batch: "duck feeding" (learn everything at the same time);

  • online: "passive sequential" (每次学习一个样本);

  • active: "question asking" (sequentially)

     —query the $y_n$ of the chosen $x_n$.

Active: improve hypothesis with fewer labels (hopefully) by asking questions strategically.

  除此之外,还有min-batch,即介于batch和online之间,每次选取一小部分数据进行学习。

4、Learning with Different Input Space $\mathcal{X}$

  • concrete: sophisticated (and related) physical meaning;

  • raw: simple physical meaning;

  • abstract: no (or little) physical meaning;

  • ......and more!!

concrete features: each dimension of $X\in  R^d$ represents "sophisticated physical meaning".

concrete features 是指能够反映当前机器学习任务间最本质区别或联系的特征。




https://blog.sciencenet.cn/blog-507072-757843.html

上一篇:第二讲 Learning to Answer Yes/No
下一篇:第四讲: Feasibility of Learning
收藏 IP: 122.205.9.*| 热度|

2 陈筝 陆泽橼

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-25 07:04

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部