|
1、 “no free lunch”理论告诫我们:如果没有假设条件存在,机器学习就不是不可行的。
2、 Hoeffding’s Inequality
$P[|\hat{X} - \mathbf{E}(\hat{X}) |> \epsilon ] \leq 2\exp{\left(-\frac{2\epsilon^2 N^2}{\sum_{i=1}^{N}(b_i - a_i)}\right)}$
其中,$a_i \leq X_i \leq b_1, \hat{X} = \frac1N \sum_{i=1}^{N} X_i $。
3、for any fixed $h$, in "big" data ($N$ large), in-sample error $E_{in}(h)$ is probably close to out-of-sample error $E_{out}(h)$ (within $\epsilon$)
$P[|E_{in}(h) - E_{out}(h)| > \epsilon ] \leq 2 \exp{(-2\epsilon^2 N )}$
If "$E_{in}(h)\approx E_{out}(h)$" and "$E_{in}(h)$ small" $\Rightarrow E_{out}(h)$ small $\Rightarrow h \approx f$ with respect to $P$.
4、
1)BAD Data for One $h$: $E_{out}(h)$ and $E_{in}(h)$ far away
当采样的时候,Hoeffding’s Inequality保证可采样数据以比较大的概率服从原始分布,但是这并不能保证没有样本违反原始数据分布,这些违反原始分布的样本称为Bad Data.
2)BAD data for many $h \Leftrightarrow$ no "freedom of choice" by $A \Leftrightarrow $ there exists some $h$ such that $E_{out}(h)$ and $E_{in}(h)$ far away. (实际上,当选择比较多的时候,我们总是会选择一个$\hat{h}$,使得数据在 $\hat{h}$上是不好的.Hoeffding’s Inequality给出了这样的$\hat{h}$ 的一个界)
5、The "Statistical" Learning Flow
1)if $|H| = M$ finite, $N$ large enough, for whatever $g$ picked by $A$, $E_{out}(g)\approx E_{in}(g)$
2)if $A$ finds one $g$ with $E_{in}(g)\approx 0$, PAC guarantee for $E_{out}(g) \approx 0$ $\rightarrow$ learning possible.
learning possible if $H$ finite and $E_{in}(g)$ small for large $N$.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 04:46
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社