氢分子医学分享 http://blog.sciencenet.cn/u/孙学军 对氢气生物学效应感兴趣者。可合作研究:sunxjk@hotmail.com 微信 hydrogen_thinker

博文

如何写英文科技论文的前言?

已有 13333 次阅读 2012-9-1 10:21 |个人分类:研究生培养|系统分类:科研笔记| xml, 如何, 英文论文

一般来讲,科研论文都是八股论文,大的结构都是设定的,题目、摘要、前言、方法、结果、讨论和参考文献。可以说,每个部分都很有讲究都很重要,但难度并不一样,在上述这些内容中,最难写的是前言,其次是讨论。根据最近学习的几个内容,把自己的学习笔记贡献给大家,希望能有点价值。这次主要谈谈前言的写法。

首先,要清楚前言的作用或目的。论文的前言是“to convince readers that you clearly know why your work is useful”就是要告诉读者“你非常清楚地知道你的工作有价值”。其次,我们要知道那些要素需要写。一般来讲,前言主要包括四个方面的内容。前面三个都属于背景,最后一个是小结。

一、大背景信息。

这主要是方便读者评价你的工作,其实同行对这个方面的内容可以说非常熟悉,这部分基本是大同行的共识。背景信息一般包括2个部分,一是大同行背景,二是小同行背景。

一般写大同行背景的时候大家都是比较类似的内容,不过也要根据你自己的研究有所侧重。例如关于脑缺血的研究,你如果研究细胞凋亡,你就需要围绕细胞凋亡来阐述。如果你研究炎症,那么你就需要围绕炎症来整理。英文表达不好的同学往往在这个部分就开始出现纰漏。因为这里不仅对概括能力要求比较高,而且需要照顾到整个研究的设计框架。建议在平时阅读的时候,注意学习和整理类似研究论文的描述模式。例如,脑缺血机制方面的研究,至少包括:兴奋毒、细胞死亡、炎症、酸中毒和自由基几个类型。这一些类型都分别选择出几个范文,放在一起反复阅读,一看作者的写作思路,二看相互之间不同的描述。当然具体到一篇论文,写作的风格不同,要结合整篇论文、杂志类型来分别对待。

写大背景往往是从普遍到特殊,普遍是描述研究对象的意义,比如某疾病的死亡率、发病率等的,暗指我选择的这个研究有价值受重视。比如肿瘤、中风、器官功能等等的。然后要从宏观上概括研究的大体情况,一般这类语言在google上就能见到类似描述(不可直接抄写),说明这开始的几句话属于套话。

有国外杂志主编曾经说,大背景需要用最简练的语言对你的研究领域进行清楚全面概述,但不要上历史课,不要面面具到,甚至写成综述(一定要针对你关心问题)。Give overall picture -keep it brief!(no history lesson!)。这也很有道理。

二、小同行信息

然后要转到你要关心的方面,例如下面这个研究中就主要针对细胞凋亡,那么作者就说,脑梗死在中心部位以坏死为主,而半暗区主要是延迟性细胞死亡,主要类型就是细胞凋亡(其实现在的看法认为这里也里是细胞坏死也很重要,没有关系,有争议没有共识,你怎么说都可以,总有一些文献的支持)。现在就引出细胞凋亡,那么就要对细胞凋亡的背景进行描述。这部分重点是要尽量用不同的语言表达出大家共识的内容来,就是所谓要训练改写功夫。二是要主要和研究主题进行衔接。不要天马行空,忘记回顾到你的主题。例如你要研究脑缺血,总会落实到某一个方面。这个部分往往会在研究指标方面落实。例如你要用细胞凋亡来说明损伤程度和治疗效果,那么这里就需要对细胞凋亡在大背景的意义说出来。后面这个文章,因为作者后面研究中主要针对线粒体途径,于是就谈线粒体途径的基本内容。到这里就完成了大背景的介绍。

然后就过渡到小同行的背景,当然也要根据具体情况。例如这篇文章的研究是希望利用一氧化碳呼吸作为一种预适应方法,来达到预防脑缺血的目的。作者首先谈模型模拟的疾病的临床治疗方法,说治疗的手段只有低温,当然低温的手段存在许多limit(如果没有局限,就别玩了),其他的治疗方法,独立或结合低温就需要寻找了。作者这样说的Other therapies, which either can be used alone or in combination with hypothermia, are therefore needed.我们中文经常说,目前缺乏有效治疗手段,寻找新的治疗方法一直是研究热点。不如人家这样说更妥当。这是引子。

然后作者提出预适应,当然对这个东西进行描述。小损伤产生大保护的概念,早期晚期不同的保护情况,临床上也存在类似证据,当然这里要回答一个问题。用这种预先适应,或者预防,对这种偶然性疾病有什么应用潜力。作者解释存在一些可以预测的这类疾病,例如生产问题、手术等。总能找到理由(其实比较牵强,因为这样意义就十分有限了,不过研究这个东西的真正意义其实就是看一氧化碳是否可达到这个作用,用这个模型是因为稳定,有时候并不是想解决这个疾病本身,如果有预防效果,那么治疗效果往往也可以,应用的意义可以联想,同行都能理解)

国外学者一般强调这里需要回答三个问题, What is the problem? Are there any existing solutions? What are their main limitations?其实总结到一句就是提出问题。前面大小同行背景,其实就是所谓的前沿内容Current state of knowledge,或者咱们要去探讨的问题。

三、解释解决方案。

前面是所谓的提出问题,具体到这个文章就是,用预适应的方法可以作为治疗脑缺血的一种方法,可以研究研究。那么随后就是:我怎么解决的,我有什么特殊的不同的思路。不过从本质上,这个部分也属于小小同行的背景介绍。也就是说局限到具体一个分子,一个手段上的背景描述。我们提供的这个文章是希望用呼吸小剂量的一氧化碳来达到预处理的目的(这句后本身不在这里说,这是为说这句话而解释)。一氧化碳的有关背景,有毒性、内源性分子、有细胞保护作用、也有人用这个做预适应的研究(和本课题很类似),小脑细胞上也有效果(几乎一样的内容)。

这里经常用 “however”, “remain unclear”等类型的语句引出你的观点和工作,这样的处理主要是强调你的独特性。但是如果不独特,就不要用这样的语言。

四、小结

这部分的写法比较多,但最常见的就是这样的。前面我说什么什么是一种解决方法,我提出的这个方法是不错的,而且好像没有人尝试过。我们做了,发现可以造成什么什么的变化,说明我这个说法确实有道理。这是直接用结论的方法,也有不同的处理,只提问题和解决方案,不说结论。我觉得前面这个更好一些。写文章和讲故事类似,但毕竟不是故事,讲故事追求悬念层层,引人入胜,写论文应追求开门见山,震耳欲聋

 

写前言需要克服的问题:

1、把握好全面和精炼的问题。写科技文章的本质是告诉别人新信息,那么你自己必须全面了解这个领域,但前言最需要的是简洁。

2、前言中不要把方法、结果讨论等拉来。这里introduction是介绍给读者,是以说服他继续全面阅读为目的。

3、千万不要过分使用novelfirst timefirst ever这些词是俗气或幼稚的表现。科学首先就是创新,新颖性是必须的,内行认为这些词汇用在科学上这都是画蛇添足。如果确实新,那也就允许你用一次,千万别用两次。

4、引用文献在论文中很重要,在前言中更重要,这里的文献是你开展这一研究的依据,怎么强调都不过分

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042632

Perinatal hypoxia-ischemia (HI) remains a major cause of acute mortality in newborns and of cognitive and motor impairments in children [1]. Cerebral damage results from oxygen and tissue energy depletion that lead to: acidosis, inflammation, glutamate excitotoxicity, cell death and generation of reactive oxygen species (ROS) during reperfusion [2]. Cerebral hypoxia-ischemia induces distinct types of cell death: within the ischemic core, rapid cell death occurs mainly as necrosis; while in the penumbra, the region around the ischemic core, delayed apoptotic cell death takes place hours and days after the insult, contributing to secondary damage [3]. In the developing brain, apoptosis also plays a homeostatic role, and many pro-apoptotic factors are normally up-regulated during early stages of maturation [4], [5]. Therefore, apoptosis is closely related to the injury response after hypoxia-ischemia in the immature brain of newborn infants [6]. Mitochondria play a major role in death of mammalian cells [7]. During the apoptotic process and upon mitochondrial membrane permeability, several biochemical molecules confined to the inter-membrane space are released to the cytosol thus activating proteases and nucleases. For example, cytochrome c released from mitochondria interacts with apoptotic protease activating factor 1 (Apaf-1) and caspase-9 to form the apoptosome that activates caspase-3 leading to cell death [8].

Currently, hypothermia is the only treatment used clinically for minimizing cerebral damage after perinatal hypoxia-ischemia, but it has limited efficiency and its use has also limitations [9]. Other therapies, which either can be used alone or in combination with hypothermia, are therefore needed. Preconditioning (PC) induction consists of an insult that does not cause damage, but triggers a protective state (tolerance) that increase cellular resistance against a subsequent and more severe challenge [10], [11]. PC can induce an early response (minutes or hours) or a late response within days including de novo protein synthesis [12]. Furthermore, clinical studies with patients suffering from transient ischemic attacks (TIA) [13] and animal models [12], [14], [15] have suggested that cerebral tolerance induced by a PC state is an efficient strategy to protect brain tissue against HI. Thus, preconditioning processes are promising alternatives for therapy in patients at high risk of suffering HI. Indeed, perinatal HI may eventually be predicted based on known risk factors associated with previous ischemic episodes including intrauterine fetal distress and hypoxic-ischemic insults during birth [16]; Bonifacio et al. 2011). Also, PC-based therapies could be useful for neonates going through major heart surgery with associated risks of global cerebral ischemia [10], [13], [17].

Carbon monoxide (CO) is commonly known to be toxic. This is due to its high affinity for haem-proteins, which can compromise oxygen delivery to tissues (carboxy-haemglobin) or can decrease oxidative phosphorylation at the cellular level by binding to cytochrome c oxidase [18]. CO is an endogenous molecule generated by haem-oxygenase (HO) activity along with the production of free iron and biliverdin [19]. Low doses of exogenous CO are cytoprotective against inflammation and apoptosis, in particular following cardiovascular incidents, organ rejection and autoimmune disease in several models [19]. Also, in rat retinal ganglion cells, inhalation of 250 ppm of CO protected against ischemia-reperfusion injury [20]. In the central nervous system (CNS), low amounts of CO limit neuroinflammation in a model of multiple sclerosis [21] and induced vasodilation, presenting cytoprotective effects in the cerebral circulation in a model of epileptic seizures in newborn piglets [22]. CO treatment also decreased infarct volume and brain damage in adult models of transient and permanent focal cerebral ischemia when the animals were exposed to CO immediately after middle cerebral artery occlusion [23], [24]. Nevertheless, the cellular mechanisms involved in CO-induced neuroprotection are still not fully understood. In primary cultures of cerebellar neurons, CO triggers preconditioning and prevents apoptosis by ROS signaling and modulation of soluble guanylyl cyclase, nitric oxide synthase and mitochondrial ATP dependent potassium channel [25]. Likewise, in primary cultures of astrocytes, CO inhibits apoptosis by directly targeting mitochondria and preventing their membrane permeabilization, which is also dependent on ROS and protein glutathionylation signaling [26].

Since preconditioning emerges as a promising strategy to limit brain damage following perinatal ischemia, we have examined the ability of CO to induce preconditioning and to limit apoptosis in the hippocampus in the present study. Pre-treatment of rat pups with CO prevented hippocampal cell death via: an increase on Bcl-2 expression, a decrease on cytochrome c translocation from mitochondria into cytosol and an inhibition of caspase-3 activation. To our knowledge, this is the first study to use CO preconditioning to prevent hypoxia-ischemia-induced neuronal death in the developing brain.

 



https://blog.sciencenet.cn/blog-41174-608068.html

上一篇:氢气呼吸后人血液中氢气浓度的变化规律
下一篇:荐读《别让不懂营养学的医生害了你》
收藏 IP: 140.206.79.*| 热度|

6 赵纪军 张南希 蒋德明 李春华 zhangling bobbylee123456

该博文允许注册用户评论 请点击登录 评论 (5 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-16 06:13

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部