自己的沙场:全同态加密研究分享 http://blog.sciencenet.cn/u/chzg99 不要对我说生命中无聊的事,不要对我说失败是命运的事。

博文

常用的时间计算复杂度

已有 9170 次阅读 2014-1-13 03:28 |个人分类:全同态|系统分类:科研笔记| style, 加密, 多项式

     全同态加密中经常用到准多项式时间、对数多项式时间、亚指数时间等等。下面这张表详细列出了这些概念的意义及范例。表中poly(x) = xO(1),表示关于x的一个多项式。


NameComplexity classRunning time (T(n))Examples of running timesExample algorithms
constant time
O(1)10Determining if an integer (represented in binary) is even or odd
inverse Ackermann time
O(α(n))
Amortized time per operation using a disjoint set
iterated logarithmic time
O(log* n)
Distributed coloring of cycles
log-logarithmic
O(log log n)
Amortized time per operation using a bounded priority queue[2]
logarithmic timeDLOGTIMEO(log n)log n, log(n2)Binary search
polylogarithmic time
poly(log n)(log n)2
fractional power
O(nc) where 0 < c < 1n1/2, n2/3Searching in a kd-tree
linear time
O(n)nFinding the smallest item in an unsorted array
"n log star n" time
O(n log* n)
Seidel's polygon triangulation algorithm.
linearithmic time
O(n log n)n log n, log n!Fastest possible comparison sort
quadratic time
O(n2)n2Bubble sort; Insertion sort; Direct convolution
cubic time
O(n3)n3Naive multiplication of two n×n matrices. Calculatingpartial correlation.
polynomial timeP2O(log n) = poly(n)n, n log n, n10Karmarkar's algorithm for linear programming; AKS primality test
quasi-polynomial timeQP2poly(log n)nlog log n, nlog nBest-known O(log2 n)-approximation algorithm for the directed Steiner tree problem.
sub-exponential time
(first definition)
SUBEXPO(2nε) for all ε > 0O(2log nlog log n)Assuming complexity theoretic conjectures, BPP is contained in SUBEXP.[3]
sub-exponential time
(second definition)

2o(n)2n1/3Best-known algorithm for integer factorization and graph isomorphism
exponential timeE2O(n)1.1n, 10nSolving the traveling salesman problem using dynamic programming
factorial time
O(n!)n!Solving the traveling salesman problem via brute-force search
exponential timeEXPTIME2poly(n)2n, 2n2
double exponential time2-EXPTIME22poly(n)22nDeciding the truth of a given statement in Presburger arithmetic




https://blog.sciencenet.cn/blog-411071-758540.html

上一篇:英国访问学者答疑(3)— 签证材料模板篇
下一篇:论文是怎样炼成的(1)
收藏 IP: 81.97.251.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-23 00:52

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部