twhlw的个人博客分享 http://blog.sciencenet.cn/u/twhlw

博文

为什么深度神经网络难以完全模拟人脑思维? 精选

已有 3170 次阅读 2024-2-23 08:27 |个人分类:2024|系统分类:科研笔记

为什么深度神经网络难以完全模拟人脑思维?由于深度神经网络基于线性函数和激活函数,不能完全模拟人脑思维,也许这是瓶颈。

在人类思维中,我们能够处理模糊的概念,例如对于一只动物是否属于“狗”的判断,我们可以接受一定程度上的模糊性。但是在深度网络中,由于其基于线性函数和激活函数的数学模型,很难处理模糊逻辑。深度网络更倾向于进行二分判定,即将输入分为两个离散的类别,难以处理中间状态或模糊边界的情况。

人脑思维能够处理各种非线性关系,例如在面对复杂的感知任务时,我们能够理解并作出合理的判断。但是深度网络的线性函数和激活函数的组合,虽然能够通过堆叠多层来逼近非线性关系,但是在处理复杂的非线性关系上仍然存在一定的局限性。这限制了深度网络在某些任务中的表现,例如自然语言处理中的语义理解。

深度神经网络在训练过程中需要大量的标注数据来调整网络参数,以达到较好的性能。而人脑在学习和理解新概念时,往往只需要很少的示例或者反馈。这表明深度网络在处理数据的效率方面与人脑存在差距,可能会对深度学习的应用范围产生限制。

深度神经网络在处理任务时往往是基于大量的训练数据,而且对于特定任务进行专门优化,缺乏对常识和上下文的理解。人脑思维在识别和解决问题时,能够基于大量的先验知识和上下文进行推理和理解,这是深度网络所不具备的。

因此,深度网络由于其基于线性函数和激活函数的模型,难以完全模拟人脑思维,这可能成为深度学习的瓶颈之一。



https://blog.sciencenet.cn/blog-40841-1422683.html

上一篇:态射是一种粗粒度的映射,势射、感射、知射呢?
下一篇:信息的价值性与事实性
收藏 IP: 123.119.248.*| 热度|

4 彭真明 冯圣中 崔锦华 郑永军

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-2 23:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部