PerfectLight06的个人博客分享 http://blog.sciencenet.cn/u/PerfectLight06

博文

如何区分光催化、热催化、光热催化?入门级知识点

已有 1173 次阅读 2023-12-29 11:48 |系统分类:科普集锦

古代人们利用酶酿酒;

中世纪时期,炼金术士利用硝石将硫磺转化为硫酸;

十三世纪,人们利用硫酸将乙醇转化为乙醚;

十九世纪,工业革命推动科学技术的发展,人们陆续发现了大量的催化现象,催化反应普遍存在于自然界中,遍及化学反应的各个领域。

直到1835年,由瑞典化学家Berzelius在其“三元论”基础之上提出来“催化”一词[1]。

催化反应因其所消耗的能量不同而分为热催化光催化电催化等,光电催化光热催化等催化反应类型属于交叉学科的产物。

将热催化和光催化结合起来的光热催化策略在近年来开始崭露头角,这篇文章我们将一起来探讨热催化、光催化及光热催化三者的区别与联系。

一、热催化

热催化,也可称作催化,属于传统催化领域,在与其他催化反应交叉时,为区别催化反应类型和反应机理,会特别注明为热催化

热催化主要是通过加热为催化反应体系提供跨越热力学能垒的能量,激发反应物向产物的转化,催化效率高

热催化反应在社会发展中起到举足轻重的作用,石油加工、化学工业和制药工业等领域发展,均依托于催化技术。在能源消耗枯竭和环境问题日益显著的今天,需要开发低成本且环境友好的催化技术。

(整理不易,记得点个赞支持一下哦~)

二、光催化

光催化则是利用光生载流子来催化反应,反应机理和路径与热催化不同反应条件温和,易操作,与传统催化发展三百余年的历史相比,光催化是比较年轻的新型催化反应类型。

光催化作为一种将丰富的太阳能转化为化学能的技术手段,其历史可以追溯到1972年,Fujishima和Honda[2]首次报道了光照n型半导体TiO₂电极会导致水分解产生氢气和氧气,这一现象的发现激发了学术界对光催化的研究热情,自此光催化技术成为热点研究内容。

从长期来看,太阳能应该是可再生能源的主要来源,因此光催化技术近些年得到了迅猛发展,也在诸多研究领域中崭露头角,如光解水制备H₂[3,4]、CO₂还原[5,6]、降解废水或空气中的污染物[7,8]和人工光合成[9,10]等。

光催化反应的反应机理涉及以下关键步骤:

光吸收:光催化剂(通常是半导体材料)吸收光能,其中电子从基态跃迁到激发态。这种吸收通常发生在可见光或紫外光范围内,其能量与光催化剂的带隙相匹配。

电子-空穴分离:在光吸收后,光催化剂中的电子和空穴被分离。电子被激发到导带,而空穴留在价带。

光生载流子传输:激发的电子和空穴在光催化剂内进行传输。这可以通过电子在导带中自由移动和空穴在价带中进行扩散来实现。

反应表面吸附:光生载流子到达光催化剂表面,并吸附到表面上的反应物分子上。这通常涉及物理吸附或化学吸附的过程。

化学反应:光吸收和表面吸附的反应物分子发生化学反应。这可能是光催化剂吸附的分子之间的直接反应,或者是光催化剂吸附的分子与周围环境中的其他物质之间的反应。

产物释放:化学反应产生的产物从光催化剂表面释放出来,并进入溶液或气相中。

这些步骤构成了光催化反应的基本机理。光催化反应的效率和选择性可以通过优化光催化剂的能带结构、表面性质和反应条件来进行调控。此外,控制光照强度、波长和反应体系中其他组分的存在也可以影响光催化反应的机理和动力学。

三、光热催化

近几年来,伴随着催化研究的逐渐深入和跨领域交叉学科的兴起,将两种或多种手段进行复合,如热催化、光催化和电催化等有效结合构成的协同催化手段,受到越来越多科研工作者的关注。其中光热催化是近些年来学者们提出的一种集光催化与热催化为一体的新型技术,光热催化反应既可提高催化反应的效率,又能将低密度的太阳能转变为高密度的化学能

一般来说,如果一个反应涉及光、热和催化转化,则可视为光热催化。

光热催化可分为三大类:

①热辅助光催化反应,主要由光驱动,催化剂本身不具备热催化活性,热能有助于进一步降低光催化的表观活性能;

②光辅助热催化反应,热能是整个反应的主要驱动力,光辐射主要起到提高局部温度的作用,光化学效应可能同时存在;

③光热耦合催化,光热效应释放的热量可以促进反应过程,光化学效应提升表观活性,热化学和光化学协同作用不仅仅是两种反应的简单相加,而是超过了光催化和热催化活性的总和。

参考文献:

[1] Roberts M W. Chiral reactions in heterogeneous catalysis (1975-1999) [J]. Catalysis Letters,2000, 67 (1): 63-65.

[2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature, 1972, 238 (5358): 37-38.

[3] Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges [J].Journal of Physical Chemistry Letters, 2010, 1 (18): 2655-2661.

[4] Kitano M, Hara M. Heterogeneous photocatalytic cleavage of water [J]. Journal of Materials Chemistry, 2010, 20 (4): 627-641.

[5] Neațu Ș, Maciá-Agulló J A, Garcia H. Solar light photocatalytic CO₂ reduction: general considerations and selected bench-mark photocatalysts [J]. International Journal of Molecular Sciences, 2014, 15 (4): 5246-5262.

[6] Maeda K, Kuriki R, Zhang M, etc. The effect of the pore-wall structure of carbon nitride on photocatalytic CO₂ reduction under visible light [J]. Journal of Materials Chemistry A, 2014,2 (36): 15146-15151.

[7] Chong M N, Jin B, Chow C W, etc. Recent developments in photocatalytic water treatment technology: a review [J]. Water Research, 2010, 44 (10): 2997-3027.

[8] Ahmed S, Rasul M G, Martens W N, etc. Heterogeneous photocatalytic degradation of phenols in waste water: a review on current status and developments [J].Desalination, 2010,261 (1–2): 3-18.

[9] Morris A J, Meyer G J, Fujita E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels [J]. Accounts of Chemical Research, 2009, 42(12): 1983-1994.

[10] Roy S C, Varghese O K, Paulose M, etc. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons [J]. ACS Nano, 2010, 4 (3): 1259-1278.

[11] Hoch, L.B., Wood, T.E., O, Brien, P.G., Liao, K., Reyes, L.M., Mims, C.A., and Ozin, G.A.(2014). The rational desiqn of a single-component photocatalyst for gas-phase CO₂ reduction using both UV and visible light. Adv. Sci. 1,1400013.

[12] Zhang, H., Wang, T., Wang, J., Liu, H., Dao, T.D., Li, M., et al. (2016). Surface-plasmon- enhanced photodriven CO₂ reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon lavers. Adv. Mater. 28,3703-3710.

[13] Li, Z., Liu, J., Zhao, Y., Waterhouse, G.I.N., Chen, G., Shi, R., Zhang, X., Liu, X., Wei, Y., Wen, X.-D., et al. (2018). Co-based catalysts derived from lavered-double-hydroxide nanosheets for the photothermal production of light olefins. Adv. Mater. 30,1800527.

[14] Song, C., Liu, X., Xu, M., Masi, D., Wang, Y., Deng, Y., Zhang, M., Qin, X., Feng, K, Yan, J., et al. (2020). Photothermal conversion of CO₂ with tunable selectivity using Fe-based catalysts: from oxide to carbide. ACS Catal. 10,10364-10374.

[15] Xu, C.Zhang, Y., Pan, F., Huang, W., Deng, B., Liu, J., Wang, Z., Ni, M., and Cen, K. (2017). Guiding effective nanostructure design for photo-thermochemical CO₂ conversion:from DFT calculations to experimental verifications. Nano Energy 41,308-319.

科学网文章后方图片.jpg



https://blog.sciencenet.cn/blog-3550685-1415801.html

上一篇:光热催化CO₂还原:活化微观机制、工业应用前景及未来展望
下一篇:光电催化系列基础知识:入射单色光-电子转化效率IPCE,及IPCE计算方法
收藏 IP: 220.207.81.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-25 15:05

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部