YucongDuan的个人博客分享 http://blog.sciencenet.cn/u/YucongDuan

博文

DIKWP Semantic Mathematics Simulate Cognitive Processe(初学者版)

已有 627 次阅读 2024-10-5 16:13 |系统分类:论文交流

DIKWP Semantic Mathematics Simulate Cognitive Processes

Yucong Duan

International Standardization Committee of Networked DIKWfor Artificial Intelligence Evaluation(DIKWP-SC)

World Artificial Consciousness CIC(WAC)

World Conference on Artificial Consciousness(WCAC)

(Email: duanyucong@hotmail.com)

Introduction

The Data-Information-Knowledge-Wisdom-Purpose (DIKWP) Semantic Mathematics framework provides a structured approach to model cognitive processes mathematically. By representing each stage of cognition—Data, Information, Knowledge, Wisdom, and Purpose—we can simulate how humans process information and make decisions.

In this analysis, I will:

  • Apply DIKWP principles to a specific cognitive task.

  • Use mathematical representations to model each stage.

  • Demonstrate how this approach simulates human cognitive processes.

Cognitive Task Simulation: Diagnosing a Medical ConditionScenario

An AI system is designed to simulate a doctor's cognitive process in diagnosing a patient with symptoms of fever, cough, and shortness of breath.

Applying DIKWP Semantic Mathematics1. Data (DDD)

Definition: Raw, unprocessed facts without interpretation.

In this context:

  • Patient's symptoms and vital signs.

Mathematical Representation:

Let DDD be the set of observed data:

D={s1,s2,s3,v1,v2,v3}D = \{ s_1, s_2, s_3, v_1, v_2, v_3 \}D={s1,s2,s3,v1,v2,v3}

Where:

  • s1s_1s1: Fever (38.5∘C38.5^\circ C38.5C)

  • s2s_2s2: Cough

  • s3s_3s3: Shortness of breath

  • v1v_1v1: Heart rate (100100100 bpm)

  • v2v_2v2: Blood pressure (120/80120/80120/80 mmHg)

  • v3v_3v3: Oxygen saturation (92%92\%92%)

2. Information (III)

Definition: Processed data with context and meaning.

Processing:

  • Interpreting symptoms and vitals in a medical context.

  • Recognizing patterns or abnormalities.

Mathematical Representation:

Transform DDD into III using a function fIf_IfI:

I=fI(D)I = f_I(D)I=fI(D)

For each data point, assign meaning:

  • i1=Fever above normal rangei_1 = \text{Fever above normal range}i1=Fever above normal range

  • i2=Presence of coughi_2 = \text{Presence of cough}i2=Presence of cough

  • i3=Shortness of breath indicates possible respiratory issuei_3 = \text{Shortness of breath indicates possible respiratory issue}i3=Shortness of breath indicates possible respiratory issue

  • i4=Elevated heart ratei_4 = \text{Elevated heart rate}i4=Elevated heart rate

  • i5=Normal blood pressurei_5 = \text{Normal blood pressure}i5=Normal blood pressure

  • ( i_6 = \text{Low oxygen saturation} }

So:

I={i1,i2,i3,i4,i5,i6}I = \{ i_1, i_2, i_3, i_4, i_5, i_6 \}I={i1,i2,i3,i4,i5,i6}

3. Knowledge (KKK)

Definition: Assimilated information that is understood and can be applied.

Knowledge Base:

  • Medical knowledge about diseases presenting with these symptoms.

  • Understanding of pathophysiology.

Mathematical Representation:

KKK includes relevant medical conditions and their associated symptoms.

Define a set of possible diagnoses DpossibleD_{\text{possible}}Dpossible:

Dpossible={d1,d2,d3}D_{\text{possible}} = \{ d_1, d_2, d_3 \}Dpossible={d1,d2,d3}

Where:

  • d1d_1d1: Influenza

  • d2d_2d2: Pneumonia

  • d3d_3d3: COVID-19

Also, knowledge of symptom-disease relationships SSS:

S={(si,dj)∣si is associated with dj}S = \{ (s_i, d_j) \mid s_i \text{ is associated with } d_j \}S={(si,dj)si is associated with dj}

4. Wisdom (WWW)

Definition: The judicious application of knowledge with insight.

Application:

  • Prioritizing diagnoses based on prevalence, patient history, and symptom severity.

  • Considering current epidemiological data.

Mathematical Representation:

Assign weights to each possible diagnosis based on probability:

w(dj)=fW(I,K)w(d_j) = f_W(I, K)w(dj)=fW(I,K)

Where fWf_WfW evaluates the likelihood of each diagnosis.

For example:

  • w(d1)=0.2w(d_1) = 0.2w(d1)=0.2

  • w(d2)=0.3w(d_2) = 0.3w(d2)=0.3

  • w(d3)=0.5w(d_3) = 0.5w(d3)=0.5

So, COVID-19 (d3d_3d3) is the most probable diagnosis.

5. Purpose (PPP)

Definition: Intentional action guided by wisdom to achieve goals.

Goal:

  • To accurately diagnose and treat the patient.

Action Plan:

  • Order confirmatory tests (e.g., PCR test for COVID-19, chest X-ray).

  • Initiate appropriate treatment protocols.

  • Implement isolation procedures to prevent spread.

Mathematical Representation:

Define an action AAA to maximize patient outcome UUU:

P=Select A that maximizes U given WP = \text{Select } A \text{ that maximizes } U \text{ given } WP=Select A that maximizes U given W

Simulating the Cognitive ProcessStep 1: Data Collection

Collect patient data DDD:

D={Fever,Cough,Shortness of breath,Elevated heart rate,Normal BP,Low O2 saturation}D = \{ \text{Fever}, \text{Cough}, \text{Shortness of breath}, \text{Elevated heart rate}, \text{Normal BP}, \text{Low O}_2 \text{ saturation} \}D={Fever,Cough,Shortness of breath,Elevated heart rate,Normal BP,Low O2 saturation}

Step 2: Information Processing

Interpret data to form III:

  • Recognize symptoms indicative of respiratory infection.

Step 3: Knowledge Application

Use KKK to generate possible diagnoses DpossibleD_{\text{possible}}Dpossible and associate symptoms using SSS.

Step 4: Wisdom Application

Calculate weights w(dj)w(d_j)w(dj) based on:

  • Symptom matching.

  • Current COVID-19 prevalence.

  • Patient's exposure history.

Step 5: Purposeful Action

Select actions AAA:

  • Order COVID-19 test.

  • Start supportive care.

  • Advise patient on isolation.

Mathematical Modeling of Each StageSymptom-Disease Association Matrix

Create a matrix MMM where rows are symptoms sis_isi and columns are diseases djd_jdj:

M=(s1s2s3s4s5s6)M = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ \end{pmatrix}M=(s1s2s3s4s5s6)

With values:

M=(111100111101111101)M = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ % Influenza 1 & 1 & 1 & 1 & 0 & 1 \\ % Pneumonia 1 & 1 & 1 & 1 & 0 & 1 \\ % COVID-19 \end{pmatrix}M=111111111111000011

Calculating Diagnostic Probabilities

Using Bayesian inference:

P(dj∣I)=P(I∣dj)P(dj)P(I)P(d_j | I) = \frac{P(I | d_j) P(d_j)}{P(I)}P(djI)=P(I)P(Idj)P(dj)

Assuming equal prior probabilities and independence, we can calculate relative likelihoods.

Decision Function

Define a decision function δ\deltaδ:

δ(I,K)=arg⁡max⁡djw(dj)\delta(I, K) = \arg\max_{d_j} w(d_j)δ(I,K)=argmaxdjw(dj)

Select diagnosis with the highest weight.

Simulating LearningScenario

The AI system encounters new data indicating a new symptom associated with COVID-19: loss of taste.

Learning Process
  • Data (D′D'D): New symptom s7=Loss of tastes_7 = \text{Loss of taste}s7=Loss of taste.

  • Information (I′I'I): Recognize s7s_7s7 as a symptom.

  • Knowledge Update (K′K'K):

Add s7s_7s7 to symptom-disease associations:

S′=S∪{(s7,d3)}S' = S \cup \{ (s_7, d_3) \}S=S{(s7,d3)}

  • Wisdom (W′W'W): Re-evaluate weights w′(dj)w'(d_j)w(dj) with updated knowledge.

  • Purpose (P′P'P): Adjust diagnostic and treatment protocols accordingly.

Representation in Semantic and Conceptual SpacesSemantic Space (SSS)
  • Semantic Units:

    • Symptoms (sis_isi): Fever, cough, etc.

    • Diseases (djd_jdj): Influenza, pneumonia, COVID-19.

    • Relationships: Associations between symptoms and diseases.

  • Mathematical Representation:

    • Each symptom and disease is a vector in high-dimensional space.

    • Similar symptoms/diseases are closer in space.

Conceptual Space (CCC)
  • Concepts:

    • Respiratory infections.

    • Viral diseases.

    • Diagnostic protocols.

  • Formation:

    • Concepts are clusters of semantic units.

    • The AI system can navigate this space to reason about diagnoses.

Simulation of Cognitive ProcessesThinking
  • Pattern Recognition: Identifying symptom patterns matching certain diseases.

  • Abstraction: Generalizing from specific symptoms to broader disease categories.

Decision-Making
  • Evaluating Options: Weighing potential diagnoses based on likelihood.

  • Selecting Actions: Choosing the best course of action to achieve the desired outcome.

Learning
  • Updating Knowledge Base: Incorporating new medical findings.

  • Improving Decision Strategies: Refining diagnostic criteria based on outcomes.

Conclusion

By applying the DIKWP Semantic Mathematics framework, we have simulated the cognitive process of diagnosing a medical condition, mirroring how a human doctor might think, decide, and learn. This approach demonstrates how AI systems can use DIKWP principles to process data, apply knowledge wisely, and act with purpose.



https://blog.sciencenet.cn/blog-3429562-1453870.html

上一篇:Simulation of Cognitive Processes Using DIKWP Semantic(初学者版)
下一篇:Cross-Domain Applications within the DIKWP Semantics(初学者版)
收藏 IP: 140.240.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-25 10:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部