|
相关完整内容请参阅:
链接:
Existence Computation and Reasoning(EXCR) and Essence Computation and Reasoning(ESCR) based revelation of the semantics of point, line and plane
February 2022
Projects: From Existence Computation to Semantic Computation through Frequency Defined Fully Typed Resources2021 Data, Information, Knowledge and Wisdom Conference (DIKW 2021)
Existence Computation and Reasoning(EXCR) and Essence Computation and Reasoning(ESCR) based revelation of the semantics of point, line and plane
基于存在计算与推理的(EXCR)与本质计算与推理(ESCR)的点、线、面的语义空间(SCR)解释
By Yucong Duan,
DIKW research group, Hainan University
Email: duanyucong@hotmail.com
Abstract: From a cognitive perspective in the semantic space, we proposed the revelation of the semantics of point, line and plane based on our proposed Existence Computation and Reasoning(EXCR) and Essence Computation and Reasoning(ESCR) mechanism.
一个具体的点p在一个具体的平面pl上是一个认知上具体的存在(p,pl)。这里具体就是具体确定的意思。
一个抽象的点或点的类型P在一个抽象的平面PL上是一个认知上抽象确定的存在(P,PL)。
它们分别对应的存在的语义ex(p,pl)与EX(P,PL)分别指代点p或P在平面对应的变量空间上被合理的具体语义iSCR具体充分限制了。这里的限制的意思就是P/p与PL/pl之间的语义联系ASS(P/p, PL/pl)满足具体的语义一致性条件CS(P/p, PL/pl)。既然平面PL也是公理集合定义AM(PL)的,也就是平面作为语义载体本身对应的ASS(PL)也是公理集合AM(PL)对应的语义在对应语义空间ASS(TYPE/type, INS/ins)空间的具体映射,那么平面空间内的一致性语义CS(AM, PL)维护能且仅能在对应公理集合的有效作用范围内。
欧式空间观察定理(EOBS):观察坐标COD的具体类型层面的等价变换MT(TYPE(COD(S), COD(T)))不改变被观察对象OBS的类型层面的语义SM(OBS)。
由于欧式空间的坐标COD(S)=COD(XS, YS, ZS)与COD(T)=COD(XT, YT, ZT)变换可以通过加法运算+与乘法运算*完成,而这两种操作都是符合CS(TYPE/type, INS/ins)公理的,因而不对任何坐标改变带来CS(TYPE/type, INS/ins)语义体系的改变。
(SM(EOBS):=CS(AM, EOBS)) AND (MT(TYPE(COD(S), COD(T))):=CS(AM, EOBS))
=>SM(<EOBS, COD(S)>):=CS(AM, EOBS) AND SM(<EOBS, COD(T)>):=CS(AM, EOBS)
=>SM(<EOBS, COD(S)>)=SM(<EOBS, COD(T)>)
在一个具体的欧式坐标空间COD(X, Y, Z)中,这个空间在语义层面上符合更普遍的抽象类型ASS(X, Y, Z)。
SM(COD(X, Y, Z)):=INS(ASS(X, Y, Z))
从语义空间的视角重新认识点、线、面之间的相对语义关系:
为了进行语义层面的存在语义计算于推理EXCR与面向本质计算与推理ESCR的解释语义ExpS的认知实例构建,我们将从语义空间的视角重新认识点、线、面之间的相对语义关系
在存在语义层面,遵循存在的守恒公理CEX,合理的ASS(X, Y, Z)语义上只是关联了一组互相不能从存在意义上相互影响各自的独立存在语义的变量X、变量Y和变量Z。
在欧式坐标空间COD(X, Y, Z)中变量X、变量Y和变量Z的取值空间分别被限定为实数R。根据组合一致性公理CES,本质变量的数量和其组合等价形态中的独立成分不可少于其本质变量的数量。
因而可以从COD(X, Y, Z)推论,COD(X, Y, Z)中的任何语义表达目标蕴含的实数域对应的自由变量数量不能超过3个。
而更直接的从ASS(X, Y, Z)推论,ASS(X, Y, Z)中的任何语义表达目标蕴含的自由变量数量不能超过3个。严格的对应ASS(X, Y, Z)整体的任何等价变量空间的语义表达本质变量必然等于3个,如有某个对应系统存在多余3个变量的表达,那将一定可以被依据语义一致性公理CS的操作对该系统整体溯源到更本质的三个变量的形态。
平面的语义:
对于任意平面PL,当坐标空间COD(X, Y, Z)被认知确定时,对应的平面也就可以被确定语义描述为,ASS(PL, COD(X, Y, Z))。
从抽象的推理可以直接得到,任意确定的平面,抛开概念的表面语义,其本质存在语义范畴只有一个确定的存在语义exPL。
三维空间3D可以被直观看作平面PL沿着任意实数坐标R的集合整体{PL}。
3D:={(PL,R)}
在这样的三维空间中,exPL的存在意义就是对一个(PL,R)对的R数值r的存在对应。
SM(exPL):=SM(3D, exPL)
:=(PL,r)
由于坐标变换的等价性,这个R等价对应变量X、变量Y和变量Z中的任意一个。为了便于陈述,我们选取R=Z。
从而我们可以得到平面的语义就是在三维空间中确定了一个变量后的两个变量的语义空间PL(X, Y)。
ASS(PL, COD(X, Y, Z)):= COD(X, Y)
:=PL(X, Y)
:=COD(X, Y, R(r))
线的语义:
在一个平面COD(X, Y)中当任意直线L被认知确定时,对应的直线也就可以被确定语义描述为,ASS(L, COD(X, Y))。
从抽象的推理可以直接得到,任意确定的直线,抛开概念的表面语义,其本质存在语义范畴只有一个确定的存在语义exL。
二维空间2D可以被直观看作直线L沿着任意实数坐标R的集合整体{L}。
2D:={(L,R)}
在这样的二维空间中,exL的存在意义就是对一个(L,R)对的R数值r的存在对应。
SM(exL):=SM(2D, exL)
:=(L,r)
由于坐标变换的等价性,这个R等价对应变量X、变量Y中的任意一个。为了便于陈述,我们选取R=Y。
从而我们可以得到直线的语义就是在二维空间中确定了一个变量后的一个变量的语义空间L(X)。
ASS(L, COD(X, Y)):= COD(X)
:=L(X)
:=COD(X, R(r), R(r))
:=COD(X,R(r))
点的语义:
在一个线COD(X)中当任意点P被认知确定时,对应的点也就可以被确定语义描述为,ASS(P, COD(X))。
从抽象的推理可以直接得到,任意确定的点,抛开概念的表面语义,其本质存在语义范畴只有一个确定的存在语义exP。
一维空间1D可以被直观看作点P沿着任意实数坐标R的集合整体{P}。
1D:={(P,R)}
在这样的一维空间中,exP的存在意义就是对一个(P,R)对的R数值r的存在对应。
SM(exP):=SM(1D, exP)
:=(P, r)
从而我们可以得到点的语义就是在一维空间中确定了唯一的变量的取值x对应的语义空间P。
ASS(P, COD(X)):= COD(x)
:=P(x)
:=COD(R(r), R(r), R(r))
References:
(1) Yucong Duan: Towards a Periodic Table of conceptualization and formalization on State, Style, Structure, Pattern, Framework, Architecture, Service and so on. SNPD 2019: 133-138
(2) Yucong Duan: Existence Computation: Revelation on Entity vs. Relationship for Relationship Defined Everything of Semantics. SNPD 2019: 139-144
(3) Yucong Duan: Applications of Relationship Defined Everything of Semantics on Existence Computation. SNPD 2019: 184-189
(4) Yucong Duan, Xiaobing Sun, Haoyang Che, Chunjie Cao, Zhao Li, Xiaoxian Yang: Modeling Data, Information and Knowledge for Security Protection of Hybrid IoT and Edge Resources. IEEE Access 7: 99161-99176 (2019)
(5) 段玉聪等, 跨界、跨 DIKW 模态、介尺度内容主客观语义融合建模与处理研究. 中国科技成果,2021年8月498期,45-48.
(6) Y. Duan, "Semantic Oriented Algorithm Design: A Case of Median Selection," 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2018, pp. 307-311, doi: 10.1109/SNPD.2018.8441053.
(7) Y. Duan, "A Constructive Semantics Revelation for Applying the Four Color Problem on Modeling," 2010 Second International Conference on Computer Modeling and Simulation, 2010, pp. 146-150, doi: 10.1109/ICCMS.2010.113.
(8) Yucong Duan, A dualism based semantics formalization mechanism for model driven engineering, IJSSCI, vol. 1, no. 4, pp. 90-110, 2009.
(9) Yucong Duan, "Efficiency from Formalization: An Initial Case Study on Archi3D" in Studies of Computing Intelligence, Springer, 2009.
(10) Yucong Duan, "Creation Ontology with Completeness for Identification of 3D Architectural Objects" in ICCTD, IEEE CS press, pp. 447-455, 2009.
(11) Y. Huang and Y. Duan, "Towards Purpose Driven Content Interaction Modeling and Processing based on DIKW," 2021 IEEE World Congress on Services (SERVICES), 2021, pp. 27-32, doi: 10.1109/SERVICES51467.2021.00032.
(12) T. Hu and Y. Duan, "Modeling and Measuring for Emotion Communication based on DIKW," 2021 IEEE World Congress on Services (SERVICES), 2021, pp. 21-26, doi: 10.1109/SERVICES51467.2021.00031.
(13) Duan Yucong, Christophe Cruz. Formalizing Semantic of Natural Language through Conceptualization from Existence. International Journal of Innovation, anagement and Technology, 2011, 2 (1), p. 37-42, ISSN: 2010-0248. ffhal-00625002
(14) Y. Duan, "A stochastic revelation on the deterministic morphological change of 3x+1," 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 2017, pp. 333-338, doi: 10.1109/SERA.2017.7965748.
(15) Yucong Duan, The end of "Objective" mathematics as a return to "Subjective". February 2022.DOI: 10.13140/RG.2.2.36171.87841.
(16) Yucong Duan, Identifying Objective True/False from Subjective Yes/No Semantic based on OWA and CWA. July 2013. Journal of Computers 8(7)DOI: 10.4304/jcp.8.7.1847-1852.https://www.researchgate.net/publication/276240420_Identifying_Objective_ TrueFalse_from_Subjective_YesNo_Semantic_based_on_OWA_and_CWA/citations
(17) Yucong Duan, Existence Computation and Reasoning(EXCR) and Essence Computation and Reasoning(ESCR) based Revelation of the Four Color Theorem. February 2022. https://www.researchgate.net/publication/358608147_Existence_Computatio n_and_ReasoningEXCR_and_Essence_Computation_and_ReasoningESCR_base d_Revelation_of_the_Four_Color_Theorem
(18) Yucong Duan, Existence Computation and Reasoning(EXCR) and Essence Computation and Reasoning(ESCR) based Revelation of the Goldbach's conjecture. February 2022. https://www.researchgate.net/publication/358637942_Existence_Computation_and_ReasoningEXCR_and_Essence_Computation_and_ReasoningESCR_based_Revelation_of_the_Goldbach's_conjecture
(19) Yucong Duan, Existence Computation and Reasoning(EXCR) and Essence Computation and Reasoning(ESCR) based Revelation of Collatz Conjecture. February 2022. https://www.researchgate.net/publication/358722876_Existence_Computation_and_ReasoningEXCR_and_Essence_Computation_and_ReasoningESCR_based_Revelation_of_Collatz_Conjecture
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 12:50
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社