||
Transport property of inhomogeneous strained graphene Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华) Chin. Phys. B, 2021, 30 (3): 030504 近年来,非均匀应力导致的赝磁场在理论以及实验研究方面受到了广泛关注。与磁场类似,赝磁场也能形成边缘态以及赝朗道能级。但由于赝磁场保持体系的时间反演对称性,对应的边缘态以及赝朗道能级的输运性质与真实磁场中的情况可能截然不同。研究这些差异性有助于理解赝磁场中量子态的性质,对于后续更好地应用赝磁场具有重要意义。 本文仔细研究了具有非均匀应力的类石墨烯体系中量子态的输运特性。我们发现,赝磁场中的边缘态在无序下并不具有“拓扑”相关的鲁棒性,即它的输运是有能量耗散的。其次,赝朗道能级的非零斜率使得它能在体内形成一维导电通道。由于真实磁场与赝磁场中量子态在输运特性方面的巨大差异,我们提出了一种通过外磁场调控的开关效应。这一效应对于赝磁场中的边缘态以及赝朗道能级都是适用的。本文的研究有助于更加深入地理解赝磁场,并有望推动基于赝磁场的器件研究。 原文链接 PDF Fig. 3. (a) and (b) Schematic representation of two-terminal device , in which the violet region is disordered. The counter-propagating edge states are labeled with black and red arrows, where the left-moving edge states with and without Ф are represented by solid red arrows and dotted red arrows, respectively. (c) and (d) Two-terminal differential conductance G versus disorder strength W for the devices shown in (a) and (b), respectively. Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国) Chin. Phys. B, 2021, 30 (3): 037503 自旋轨道矩(SOT)为自旋电子器件提供了一种快速、高效的磁矩操控方式,被广泛用于驱动翻转磁矩、磁振荡、畴壁运动和斯格明子运动等。典型的SOT器件具有由重金属/铁磁性金属组成的双层结构。为了降低磁矩翻转操作时的电流密度,从而降低功耗,提高 SOT效率成为该领域研究和应用的一个重要目标。 掺杂、合金化等方法是提高重金属中SOT效率的有效方法。通过合金化提高重金属中 SOT 效率被认为与重金属电阻率的增加有关,即如果重金属中SOT起源于自旋霍尔效应,并且固有的能带结构效应占主导地位,SOT效率可表达为式子ξDL = Tin (2e/ℏ) σSHintri ρHM。因此,如果自旋霍尔电导σSHintri不降低,界面上的自旋透明度Tin保持不变,SOT效率ξDL可以通过增加重金属电阻率ρHM来增强。这里我们通过在重金属Pt中掺杂Ni获得Pt100−xNix合金,从而增强该体系的SOT效率。采用自旋轨道矩铁磁共振(ST-FMR)技术研究了Pt100−xNix/Ni78Fe22双层膜的磁学性能和SOT效率。通过分析ST-FMR谱获得的有效磁各向异性场和有效阻尼常数对Ni浓度的依赖关系较弱。有趣的是,从ST-FMR谱的角度依赖性中提取的SOT效率对Ni浓度表现出非单调依赖性,在x = 18时达到最大值。通过Ni掺杂获得的Pt100−xNix合金增强了SOT效率,显示出能够降低磁矩翻转驱动电流的潜力。此外,Ni的价格相比于Pt较为便宜,Pt100−xNix合金可以大大降低SOT自旋电子器件的成本。 本研究提出了一种有效增强重金属中SOT效率的方法,为开发高性能、低功耗自旋电子器件提供了参考方案。 原文链接 PDF Figure 3. (a) Angular dependence of symmetric and antisymmetriccomponents for Pt100-xNix/NiFe devices with x = 18, which are mainly dependent on angle relation of cosϕsin2ϕ. (b) The values of SOT efficiency xSOT and resistivity rHM as a function of Nicontent. Plasmonic properties of graphene on uniaxially anisotropic substrates Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华) Chin. Phys. B, 2021, 30 (3): 037801 石墨烯等离激元学是当前光学研究的前沿热点;和金属体系的等离激元相比,石墨烯等离激元具有更高的近场局域和增强、更长的准粒子寿命、更好的亚波长性,以及动态可调等优点。目前石墨烯等离激元的研究大多只考虑各向同性的衬底,此时衬底的作用主要体现在对等离激元共振的屏蔽效应,可用简单的平方反比关系表示;而人们对于各向异性的衬底仍缺乏足够的认识。鉴于此,本文围绕石墨烯条带在单轴各向异性衬底上等离激元的共振行为,分别探讨了共振频率与衬底的面内、面外介电常数的关系,阐述了它们的异同作用,并与各向同性衬底比对,提出了共振频率中各向异性衬底的等效介电常数。 本文的研究很有现实意义,因为晶格匹配的六方氮化硼是石墨烯最理想的衬底,而其介电常数就是各向异性的,且在特定频段还具有双曲特性,即两个方向上的介电常数互为异号。本文也讨论了此情况下等离激元共振的衬底效应。本文提出的理论将对基于六方氮化硼等各向异性衬底的石墨烯光电器件的设计和性能优化提供理论指导,拓展了石墨烯等离激元在太赫兹频段的研究范畴,将极大地推动石墨烯光电器件的实用化进程。 原文链接 PDF Figure 2. Comparison of theory and simulation results of graphene dispersion on dielectric anisotropic substrates and graphene plasmonic electric field in epsilon near zero band The plasmonic frequencies as the function of ε⊥ (a) and as the function of ε∥ (b), (c) and (d) the electric field distributions at situations marked in (a) and (b). Delta-Davidson method for interior eigenproblem in many-spin systems Haoyu Guan(关浩宇) and Wenxian Zhang(张文献) Chin. Phys. B, 2021, 30 (3): 030205 量子多体系统的全部本征值和本征态对人们理解其热力学和多体动力学性质有着至关重要的意义。比如,在最近兴起的量子热力学和多体局域化为代表的全新领域,人们试图探索量子系统在什么情况下过渡到经典世界,在什么情况下展现出量子世界独有的特性。除了基态及其附近能级的信息,人们还需要知道量子多体系统的中间能级及其本征态的准确信息。过去,基于张量网络的方法求解基态取得了极大的成功——对于符合面积定律的基态,它们可以做到相对于系统自旋(qubits)数目呈多项式级别复杂度。然而,并不是所有量子多体系统的基态都符合面积定律,尤其在相变点附近。另外,更加棘手的是,即便采用量子计算机求解一般的多自旋体系本征值问题也是困难的——该问题已经被证明是QMA-complete问题。 为解决上述难题,本文设计了一套delta-Davidson方法,高效率、高精度、低内存地求解量子系统任意区间段内(包括基态和中间的高激发态)的所有本征值和本征态。该工作的创新性在于:(1)避免了存储高达一百万乘以一百万的矩阵(10,000 GB量级):内存中只保留量子态,内存占用小(10 GB量级);(2)在此基础上,利用切比雪夫多项式高效拟合Dirac delta函数的独特性质,开发出一种类比于虚时间演化的方式,快速放大所需本征态的比例;(3)进一步结合Davidson方法的优势,大幅提升效率,高效解决中间能级高度近简并的复杂情况;(4)通过与多种方法进行严格对比,验证了本方法的总体优势。本文提出的新方法,有助于通过并行计算求解大规模体系的全部本征值问题。 原文链接 PDF Fig. 2. The relative error of the 10 converged states in ground clusters (red lines with diamonds), central clusters (green lines with circles), the 1σ clusters (blue lines with squares), and the 2σ clusters (black lines with asterisks), is shown for (a) Ising model with N = 20 and (b) spin glass shards model with N = 13. The ground clusters are ordered by eigenvalues while the others by the distance between λ and eigenvalues, in an increasing order. Insets present the normalized DOS for the systems and the location of different λ’s (vertical dashed lines). The x-axis of the insets is the system energy measured by Γ, and the y-axis is the normalized DOS. SPECIAL TOPIC — Quantum computation and quantum simulation SPECIAL TOPIC —Twistronics SPECIAL TOPIC — Machine learning in condensed matter physics SPECIAL TOPIC — Phononics and phonon engineering SPECIAL TOPIC — Water at molecular level SPECIAL TOPIC — Optical field manipulation SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids SPECIAL TOPIC —Terahertz physics SPECIAL TOPIC — Ultracold atom and its application in precision measurement SPECIAL TOPIC — Topological 2D materials SPECIAL TOPIC — Active matters physics SPECIAL TOPIC — Physics in neuromorphic devices SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale TOPICAL REVIEW — Quantum dot displays TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang SPECIAL TOPIC — Strong-field atomic and molecular physics TOPICAL REVIEW — Strong-field atomic and molecular physics TOPICAL REVIEW — Topological semimetals SPECIAL TOPIC — Topological semimetals SPECIAL TOPIC — Photodetector: Materials, physics, and applications TOPICAL REVIEW — Photodetector: Materials, physics, and applications TOPICAL REVIEW — Fundamental research under high magnetic fields Virtual Special Topic — High temperature superconductivity Virtual Special Topic — Magnetism and Magnetic Materials
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-10 23:24
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社