|
引用本文
叶凌箭. 间歇过程的批内自优化控制. 自动化学报, 2022, 48(11): 2777−2787 doi: 10.16383/j.aas.c190855
Ye Ling-Jian. Within-batch self-optimizing control for batch processes. Acta Automatica Sinica, 2022, 48(11): 2777−2787 doi: 10.16383/j.aas.c190855
http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190855
关键词
间歇过程,不确定性,实时优化,自优化控制,动态优化
摘要
针对间歇过程的实时优化问题, 提出了一种基于自优化控制的批内优化方法. 以测量变量的线性组合为被控变量, 在单批次内跟踪控制被控变量实现间歇过程的实时优化. 根据是否在间歇过程的不同阶段切换被控变量, 给出了两种自优化控制策略, 对每种策略又分别提出两种设定轨线选取方案. 为求解这些情形下的最优被控变量(组合矩阵), 以最小化平均经济损失为目标, 推导了组合矩阵和经济损失之间的函数关系, 分别将其描述为相应的非线性规划问题. 在此基础上, 进一步引入了扩张组合矩阵, 将这些非线性规划问题归纳为求解扩张组合矩阵的一致形式(扩张组合矩阵具有不同的结构约束), 并推导得到了其中一种方案的解析解计算方法. 以一个间歇反应器为研究对象, 验证了方法的有效性.
文章导读
化工过程普遍存在不确定性, 如何采用有效的优化方法找到不确定条件下系统的真实最优点, 对提高化工企业的经济效益发挥着关键作用[1]. 大规模化工过程的控制系统通常为分层递阶结构[2-3], 控制层(下层)的主要任务是抑制底层扰动, 跟踪优化层传递来的被控变量设定值, 优化层(上层)根据调度层(顶层)传达的生产任务指标等, 对当前工况进行识别, 执行相应的优化算法计算出最优设定值, 传递给控制层执行.
优化层执行的优化算法通常以化工过程的非线性模型为基础, 以传统的“二步法” 实时优化[4-5] 为例, 首先确定模型的不确定参数, 运行过程中采集系统的输出量数据, 对未知参数进行估计, 再基于更新的系统模型进行重优化, 计算出被控变量的最优设定值后传递给控制层. 这一过程通常还需要结合数据调和、稳态检测等技术手段加强优化结果的可靠性, 工业过程的优化周期一般为4 ~ 8小时. 针对传统的“二步法” 的缺点, 近年来涌现出了新的实时优化方法, 如Bonvin课题组提出的修正项自适应方法(Modifier adaptation)[6-7], 通过对标称模型的约束及梯度进行修正, 即使不估计扰动参数也能收敛到真实最优点. 文献[8-10]考虑运行层之间的不同时间尺度, 提出了数据驱动的多速率分层运行优化控制方法, 基于Q学习对基础控制回路的设定值进行在线优化, 使运行层能更好地优化控制性能指标. 自优化控制(Self-optimizing control, SOC)[11-13] 提出通过离线选择控制层的被控变量, 设定值则在线保持不变, 提供了实时优化的另一种研究思路. 在自优化控制中, 被控变量可以是常规物理量的函数, 即构造虚拟量进行控制, 可使系统的操作变量可以在不确定性下进行自寻优. 当底层控制的优化作用较强时(经济损失可接受), 甚至可以省略单独的优化层, 从而简化控制系统. 相比传统的优化方式, 自优化控制的优化在工作频率为秒/分的反馈控制中完成, 因此优化速度得到大幅度提升, 在一系列研究中表现出良好的效果[14-17].
间歇过程是一类批次加工的化工过程, 具有规模小、灵活性高的特点, 在需求多元化的现代市场中应用越来越广泛. 相比连续化工过程, 间歇过程具有“多重时变” 的操作特征[18-19]. 一方面, 间歇过程具有重复特性, 可以引入学习机制从历史批次的数据中提炼出有用的信息, 改进后续批次的跟踪控制和经济指标优化, 典型的如迭代学习控制[18, 20-23]、批间实时优化[23-24] 等控制和优化技术. 另一方面, 由于其时变特性, 间歇过程在批次内无稳定操作点, 相比连续过程的控制和稳态优化更具挑战[25-27]. 自优化控制经过近20年的发展, 针对连续过程已报道了一系列被控变量求解方法[12, 28-31], 但是针对需动态优化的间歇过程仍缺乏足够的研究. 值得注意的是, 由于从批间角度看间歇过程是一个静态过程[32], 近年来文献[33-34]提出了间歇过程的批间自优化控制方法. 此类方法仅利用了间歇过程的重复性, 基于已有的静态自优化控制方法求解被控变量, 然后设计批间控制器调节输入轨迹, 逐批次将被控变量控制于恒定设定点, 实现实时优化. 但批间优化本质上还是静态方法, 由于需要若干个批次才能实现被控变量的跟踪控制, 优化作用慢, 因此未充分发挥自优化控制的优势. 此外, 批间优化只对具有重复特性的扰动具有效果, 当系统受到高频扰动作用时, 批间控制器难以实现有效的实时优化.
最近, Ye等[35]提出了一种针对间歇过程的动态自优化控制方法, 通过考虑批内变量的因果性, 最终得到了具有优化作用的控制律. 设计控制系统时, 选择被控变量和设计控制器通常是两个独立任务[36], 前者主要考虑经济指标的优化, 后者关注于如何更好地跟踪控制被控变量, 保证控制系统的稳定性和鲁棒性. 如何在此前提下求解批内被控变量, 仍是一个开放的课题.
本文研究了间歇过程的批内自优化控制问题, 贡献如下: 1)基于自优化控制策略提出以输出变量的线性组合为被控变量(虚拟变量), 在批次运行过程中对其进行跟踪控制, 以控制手段实现实时优化; 2)根据是否在过程不同阶段切换被控变量, 给出了两种自优化控制策略, 对每种策略又分别给出了两种设定轨线选取方案; 3)引入扩张组合矩阵, 将这些情形统一描述为具有不同结构约束的最优组合矩阵求解问题, 并推导得到了其中一种方案的解析解计算方法. 目前为止, 本文所提方法在国内外文献中未见报道.
图 1 间歇过程的离散化变量及自优化控制策略
图 2 最优扩张组合矩阵Hˉ的求解步骤
图 3 标称点的最优输入轨迹
本文研究了间歇过程的批内自优化控制问题, 在单批次运行过程中控制一组虚拟的被控变量(输出变量的线性组合), 实现间歇过程的实时优化. 对此, 给出了两种自优化控制策略(被控变量恒定但设定值时变; 被控变量和设定值均时变). 对它们的设定值选取问题又分别提出两种方案(设定值轨线固定不变; 设定值轨线在线修正), 共计4种方法. 通过引入扩张组合矩阵Hˉ, 将这4种方法统一描述为具有不同结构约束的最优Hˉ求解问题, 并推导得到了策略3 (方案4)的Hˉ解析解计算方法(定理2).
本文提出的4种被控变量选择方法, 其对应的闭环控制系统具有不同的复杂度和优化性能. 针对一般的实际间歇过程, 应综合考虑这两个因素并取得合理权衡. 间歇反应器的仿真研究中, 采用策略2 (方案2) (恒定被控变量:c2(t))得到的控制结构较为简单, 并且能通过在线修正c2(t)的设定值增强优化效果, 是较为合理的方案.
作者简介
叶凌箭
浙大宁波理工学院信息学院教授, 现为湖州师范学院教授. 2006年, 2011年分别获得浙江大学化工系学士, 控制系博士学位. 主要研究方向为控制结构设计, 不确定系统的实时优化. E-mail: lingjian.ye@zjhu.edu.cn
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 06:26
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社