||
第一作者:Wang Tian
第一单位:加州大学伯克利分校
通讯作者:Sheng Luan
Abstract
背景回顾:The calcium ion (Ca2+) is a universal signal in all eukaryotic cells. A fundamental question is how Ca2+, a simple cation, encodes complex information with high specificity.
编码与解码:Extensive research has established a two-step process (encoding and decoding) that governs the specificity of Ca2+ signals. While the encoding mechanism entails a complex array of channels and transporters, the decoding process features a number of Ca2+ sensors and effectors that convert Ca2+ signals into cellular effects. 保守与分化:Along this general paradigm, some signalling components may be highly conserved, but others are divergent among different organisms. 植物细胞:In plant cells, Ca2+ participates in numerous signalling processes, and here we focus on the latest discoveries on Ca2+-encoding mechanisms in development and biotic interactions. 生长发育:In particular, we use examples such as polarized cell growth of pollen tube and root hair in which tip-focused Ca2+ oscillations specify the signalling events for rapid cell elongation. 生物互作1:植物-微生物:In plant–microbe interactions, Ca2+ spiking and oscillations hold the key to signalling specificity: while pathogens elicit cytoplasmic spiking, symbiotic microorganisms trigger nuclear Ca2+ oscillations. 生物互作2:植物-草食动物:Herbivore attacks or mechanical wounding can trigger Ca2+ waves traveling a long distance to transmit and convert the local signal to a systemic defence program in the whole plant. 问题:What channels and transporters work together to carve out the spatial and temporal patterns of the Ca2+ fluctuations? 解决:This question has remained enigmatic for decades until recent studies uncovered Ca2+ channels that orchestrate specific Ca2+ signatures in each of these processes. 展望:Future work will further expand the toolkit for Ca2+-encoding mechanisms and place Ca2+ signalling steps into larger signalling networks.
摘 要
钙离子是真核生物中比较普遍的一种信号物质。一个最基本的问题是这种简单的阳离子,即Ca2+如何高特异性地编码复杂的信息。很多相关的研究已经建立起了一个“两步”过程,即编码和解码,赋予了钙离子信号的特异性。其中,编码机制包含一系列复杂的通道和转运体,而解码机制则涉及了一系列的钙离子感受器和效应器,从而将钙离子信号转化为细胞内的效应。在这个通常的范畴内,一些信号组分可能是高度保守的,但还有一些在不同的生物之间存在分化。在植物细胞中,钙离子参与了多个信号进程,本文中,作者主要关注了最近有关钙离子编码机制参与植物发育和生物互作的研究。尤其是,作者通过实例,比如说花粉管和根毛极性细胞生长中,尖端钙离子节律作为特定的信号特征,作用于快速的细胞伸长。在植物与微生物的互作中,钙离子峰值与节律是一系列特定信号转导的关键,包括病原体引起细胞质钙离子峰值、共生微生物诱导核钙离子节律。草食动物的攻击或机械损伤会诱导钙离子波动,该波动会进行长距离的扩散、传递,将局部的信号转化成了整个植株的系统性防御程序。哪些通道和转运体一起合作,共同作用于钙离子波动的时空模式?几十年来,这个问题都是一个谜,直到最近的一份研究揭示了钙离子通道在这每一个进程中都发挥了决定特定的钙离子信号的作用。未来的工作可以进一步揭示钙离子编码机制的组分与作用机理,并且将钙离子信号转导整合进一个更加宏大的信号转导网络中。
通讯作者
**Sheng Luan** 个人简介: 1991年,哈佛大学,博士。 研究方向: 植物如何感知和响应环境信号。
doi: 10.1038/s41477-020-0667-6
Journal: Nature Plants
Published date: June 29, 2020
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-9 19:08
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社