|||
兩個自由調整的指北針
Jinlong Zhang
用R繪製地圖,或者三維圖時, 有時候需要添加指北針, 但是很多時候很難進行角度調整等。 這裡提供了兩個繪製指北針的函數。 可以調整中心點坐標, 指北針的大小,以及旋轉的角度, 分別用於二維平面作圖和三維作圖。
### 可以調整大小,以及旋轉的指北針
### location 設定指北針中心點, 的x, y, z坐標。
### size 為指北針大小的控制變量,單位為3D圖形中的1,
### rotation為指北針指向的控制變量, 單位為弧度。
northarrow <-function(location =c(0,0), size =1, rotation =0){
nnn <-par("cin")
x1 =(c(-2,0,0)*size+location[1])
y1 =c(-3.5, -2, 3.5)*size+location[2]
xx1 <-(x1-location[1])*cos(rotation)- (y1 - location[2])*sin(rotation)+ location[1];
yy1 =(x1-location[1])*sin(rotation)+ (y1 - location[2])*cos(rotation) + location[2];
polygon(xx1, yy1, col=1)
x2 =c(2,0,0)*size+location[1]
y2 =c(-3.5, -2, 3.5)*size+location[2]
xx2 <-(x2-location[1])*cos(rotation)- (y2 - location[2])*sin(rotation)+ location[1];
yy2 =(x2-location[1])*sin(rotation)+ (y2 - location[2])*cos(rotation) + location[2];
polygon(xx2, yy2, col=0, border =1)
return(invisible(list(xx1, yy1, xx2, yy2)))
}
plot(0:100, 0:100, pch ="")
north <- northarrow(location =c(10,10), rotation =(pi/180)*45)
north <- northarrow(location =c(25,25),size =2, rotation =(pi/180)*90)
north <- northarrow(location =c(50,50),size =0.5,rotation =(pi/180)*180)
north <- northarrow(location =c(75,75),size =2.5,rotation =(pi/180)*270)
######################################
northarrow.3D 可以用在三維圖中。
### location 設定指北針中心點, 的x, y, z坐標。
### pmat為persp的坐標矩陣。
### size 為指北針大小的控制變量,單位為3D圖形中的1,
### rotation為指北針指向的控制變量, 單位為弧度。
northarrow.3D <-function(location =c(80, 60, 260), pmat, size =5, rotation =0){
x1 =(c(-2,0,0)*size+location[1])
y1 =c(-3.5, -2, 3.5)*size+location[2]
xx1 <-(x1-location[1])*cos(rotation)- (y1 - location[2])*sin(rotation)+ location[1];
yy1 =(x1-location[1])*sin(rotation)+ (y1 - location[2])*cos(rotation) + location[2];
north.res1 <- trans3d(x = xx1, y = yy1, z = location[3], pmat)
polygon(north.res1[[1]], north.res1[[2]], col=1)
x2 =c(2,0,0)*size+location[1]
y2 =c(-3.5, -2, 3.5)*size+location[2]
xx2 <-(x2-location[1])*cos(rotation)- (y2 - location[2])*sin(rotation)+ location[1];
yy2 =(x2-location[1])*sin(rotation)+ (y2 - location[2])*cos(rotation) + location[2];
north.res2 <- trans3d(x = xx2, y = yy2, z = location[3], pmat)
polygon(north.res2[[1]], north.res2[[2]], col=0)
return(invisible(list(north.res1, north.res2)))
}
###########################################
########### 舉例###########
x <-seq(-10, 10, length=30)
y <-seq(-10, 10, length=30)
f <-function(x, y){ r <-sqrt(x^2+y^2); 10*sin(r)/r }
z <-outer(x, y, f)
z[is.na(z)]<-1
op <-par(bg ="white")
res <-persp(x, y, z, theta =30, phi =35, expand =0.5, col="grey",
ltheta =120,ticktype ="detailed",
xlab ="X", ylab ="Y", zlab ="Sinc( r )")
###
northarrow.3D(location =c(5, 5, 10), pmat = res, size =0.5,rotation =(pi/180)*45)
northarrow.3D(location =c(-5, 5, 10), pmat = res, size =0.8,rotation =(pi/180)*90)
northarrow.3D(location =c(5, -5, 10), pmat = res, size =0.7, rotation =(pi/180)*180)
northarrow.3D(location =c(-5, -5, 10), pmat = res, size =0.6, rotation =(pi/180)*270)
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-3 12:19
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社