全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

人类燃烧尽所有的化石燃料就能使地球回到最暖的中生代吗?

已有 3051 次阅读 2021-12-19 19:18 |个人分类:全球变化|系统分类:论文交流

人类燃烧尽所有的化石燃料就能使地球回到最暖的中生代吗?


                         吉林大学:杨学祥,杨冬红


       被夸大的温室效应


      在地球历史中,全球变暖与大气中温室气体高浓度对应,大冰期与大气中温室气体低浓度对应,温室气体的保温作用得到确认。实际上,地球的气候变化受多种因素的制约,温室气体的大气浓度也受到多种因素的控制。

      与全球变暖相关的因素:

      大气温室气体浓度最高、大气密度最大、核幔起源的超级火山喷发最强、太阳辐射强度最大、地球公转轨道偏心率最小、大陆分散分布在赤道附近;化石燃料被燃烧;海洋温度达到最高(释放出溶解的温室气体)。

      与大冰期相关的因素:

      大气温室气体浓度最低、大气密度最小、核幔起源的超级火山喷发最弱、太阳辐射强度最小、地球公转轨道偏心率最大、大陆集中分布在地球两极;海水变冷溶解大量温室气体;温室气体被光合作用转变为化石燃料,温室气体与二氧化硅反应形成碳酸钙层。

      与大气温室气体浓度最高相关的因素:化石燃料大量燃烧;海洋温度升高释放温室气体;超级火山喷发带来温室气体;碳酸盐层被地下热能煅烧放出温室气体;地球公转轨道偏心率最小;大气密度浓密; 

        与大气温室气体浓度最低相关的因素:光合作用将温室气体变为化石燃料;酸雨与硅酸盐作用形成碳酸盐;海洋变冷吸收大气中的温室气体;地球公转轨道偏心率最大;大气密度稀薄;

       综上所述,仅仅燃烧化石燃料所释放的温室气体,不足以形成中生代的温暖期。


       全球五次生物大灭绝提供的铁证

 

       据科学家探索发现,其实我们所居住和生活的地球已经经历过五次生物大灭绝。     

       第一次物种大灭绝发生在4亿4千万年前的奥陶纪末期,由于当时地球气候变冷和海平面下降,生活在水体的各种不同的无脊椎动物便荡然无存。

      在距今4.4亿年前的奥陶纪末期,发生地球史上第一次物种灭绝事件,约85%的物种灭亡。古生物学家认为这次物种灭绝是由全球气候变冷造成的。在大约4.4亿年前,撒哈拉所在的陆地曾经位于南极,当陆地汇集在极点附近时,容易造成厚的积冰——奥陶纪正是如此。大片的冰川使洋流和大气环流变冷,整个地球的温度下降,冰川锁住水,海平面降低,原先丰富的沿海生态系统被破坏,导致85%的物种灭绝。   

      第二次大灭绝发生在3.75亿年前,也就是过了不到1亿年,这次灭绝了一半的海洋生物。海洋生物诡异般地大规模消失了,相比之下,陆地生物却几乎毫发无损。

      第二次物种大灭绝发生在泥盆纪晚期,其原因也是地球气候变冷和海洋退却。在公元前约3.65亿年的泥盆纪后期,历经两个高峰,中间间隔100万年,发生地球史上第二次物种灭绝事件,海洋生物遭到重创。  

      第三次大灭绝发生在2.51亿年前,相对于前一次大灭绝,这次也是又过了1亿年,也是史上已知规模最大的一次生物灭绝事件,这一次有70%的陆地生物灭绝了,96%的海洋生物灭绝了。科学家认为,灭绝原因比较复杂,可能是由于火山大规模喷发制造了大量的酸性颗粒和温室气体,不仅妨碍植物的光合作用,还推动全球气温急剧上升。

       由德国地学研究中心的地球动力学建模人员、法国格勒诺布尔大学的地球化学家、德国马克斯普朗克研究所和俄罗斯科学院的研究人员组成的一个国际研究小组,对西伯利亚地盾(Siberian traps)火山大爆发和地球史上规模最大的生物大灭绝的关系发表研究报告表达了新看法。研究报告发表在在最近一期的《自然》杂志。

  西伯利亚地盾位于俄罗斯西伯利亚。西伯利亚地盾的形成时间,介于二叠纪与三叠纪之间,约2.51亿年前到2.5亿年前,与二叠纪-三叠纪灭绝事件的时期相符合,那也正是地球最暖的时期。西伯利亚地盾火山爆发持续约一百万年,是过去5亿年来,已知最大型的火山爆发之一。

  西伯利亚地盾火山喷出的岩浆面积高达7百万平方公里,接近澳大利亚的面积。西伯利亚地盾火山可能已向空中喷射多达100万亿吨的碳(人类每年排放到大气中的碳约为80亿吨),这足以造成全球气候灾难。

  研究人员认为,西伯利亚地盾火山连锁爆发引发煤炭燃烧,造成地球变暖,火山灰中含有的有毒物质逐渐渗入到陆地和水中,导致生物中毒而死,造成地球早期历史中生物大规模灭绝。

http://www.qulishi.com/news/201701/159696.html

       第四次灭绝发生在2亿年前,和第三次时间只差了5000万年。这一次有50%的物种灭绝了,原因不明,但为恐龙成为地球上生物链的霸主扫清了障碍。  

       第五次大灭绝相信大家都不陌生,在6500万年前,一颗小行星撞击了尤卡坦半岛,大量灰尘进入大气层,在随后的1年时间内都是遮天蔽日,日照量锐减令植物大批死亡,随着生态系统瓦解,75%的物种惨遭灭绝,其中就包括恐龙。越来越多的研究表明德干玄武岩的喷发与大灭绝的密切时间联系。

       科学家们确信希克苏鲁伯陨石撞击事件是造成白垩纪至第三纪恐龙大灭绝的原因。希克苏鲁伯撞击事件会引发大规模海啸、地震与火山爆发,撞击产生的碎片和灰尘会造成全球性的风暴,长时期遮蔽阳光,妨碍植物的光合作用,造成生态系统的瓦解,一系列的灾难最终导致全球约17%的科、50%的属、75%的物种灭绝,灭绝事件的规模在5次大灭绝事件中排名第2。

       现在的问题是,太阳能量的长期积累和释放对生物大灭绝有贡献吗?

       过去科学家一致认为,温室气体来自火山喷发和人工排放,如今看来这是一个气候历史的大冤案。


      是什么引起五次生物大灭绝? |《科学通报》解读


      生物大灭绝是指在相对比较短的时间内地球生物大量消亡甚至毁灭的一种灾变事件。由于事关地球整个生物圈的存亡,因而,备受各国科学家和广大民众的高度关注。

      关于目前地球是否正经历着一次前所未有的生物大灭绝?人类活动对地球生物圈是否产生致命影响?仍然处于不断的争论之中。然而,由于人类历史相对于地球历史非常短暂,要阐明这样一个事关地球生物圈发展趋势的关键问题,仅仅依据人类观察所获得的几百至上千年的数据,是难于给出明确答案的,人类历史时期生物多样性的发展趋势应该纳入到地质历史中去分析和研究。在整个显生宙的历史中发生了至少五次生物大灭绝事件,这些事件曾经导致当时的地球生物多样性明显减少,对整个生物圈产生重大影响。


      那么是什么导致了地质历史时期发生了五次生物大灭绝呢?


      《科学通报》2017年第11期特邀中科院南京古生物所沈树忠院士和张华副研究员,对地质历史时期发生的五次生物大灭绝进行了系统的总结和评述。

      他们认为已有研究表明,大约6亿年以来生命在不断地演化,还没有任何天外事件曾经毁灭整个地球生物圈,所有这些生物大灭绝事件几乎都伴随有剧烈的全球性环境变化。奥陶纪末、泥盆纪晚期F/F、三叠纪末、中石炭世事件都伴随有冰室效应/温室效应气候转变事件的发生;二叠纪末、PETM、白垩纪末等事件发生的前后都有温度剧烈变化、海洋酸化和缺氧、海洋微生物爆发等现象出现,所有这些都说明剧烈的气候环境变化是导致生物大灭绝发生的原因。其幕后黑手大多指向地球内部的活动造成的大规模火山喷发,即便是白垩纪末生物大灭绝事件,越来越多的研究表明德干玄武岩的喷发与大灭绝的密切时间联系。大规模火山喷发带来的CO2等温室气体本身不足以造成地质记录所表现的碳同位素、温度等变化幅度,但火山作用可以触发蕴藏在各大陆和大陆架沉积物中的大量甲烷等温室气体在短时间内快速释放,这些温室气体大量进入大气,可导致地表环境剧烈变化,从而造成生物大灭绝,因此,触发全球气候和环境剧变的机制成为整个生物圈崩溃乃至毁灭的最大威胁。

      尽管对地质历史时期五次生物大灭绝的研究总体表明与大规模火山喷发相关的环境剧变是主要的原因但这五次生物大灭绝的模式、生态效应,火山喷发、环境恶化与生物大灭绝之间的时间关系等远还没有研究清楚,而要真正解答这些问题则需要精准的化石分类学基础、高精度的时间框架以及多种地球化学指标相结合的环境背景等综合研究才能得出比较合理的结论。

https://blog.sciencenet.cn/blog-528739-1053171.html

现代火山活动有明显致冷的记录。短周期的对应关系是:小冰期对应强火山活动,小气候最适期对应弱火山活动。但是,火山长周期的对应关系却是:火山活动峰值与全球无冰期对应,而谷值与大冰期对应

CoffinEldholm1993)海洋考察结果,巨大火成区所显示的大陆溢流玄武岩和大洋溢流玄武岩的喷发强度与全球高温和大气CO2高浓度对应(见图3-5

 


图1 全球巨大火成区



   


图2  1.5亿年以来海平面变化、全球气温变化、黑色岩、大规模生物灭绝

 


图3 1.2亿年以来热幔柱喷发的规模比较:规模变小与气温变冷对应 

120Ma前海底热幔柱喷发形成翁通爪哇海台,其释放的热量为6×1026J,海洋的质量为1.45×1024g,可使全球海水温度增高33,平均每万年海温升高0.1。有证据表明,在古新世末不到6000年的时间内大洋底层水增温40C以上。海底火山活动引发的海温增高和CO2排放在全球气候变化中的作用不容忽视,这是白垩纪强烈火山活动、大气中高浓度CO2和异常高温一一对应的原因。最近发现在15~20Ma前南极的夏季温度要比现在高出大约11,最高可以达到大约7。这一南极地区的“绿化”过程最高峰大致出现在中新世中期,距今大约16.4~15.7Ma。中新世中期的温暖环境被认为应当对应于400~600ppm的大气二氧化碳浓度15 Ma前发生的哥伦比亚溢流玄武岩喷发是大气CO2浓度增加的原因(见图2)。

1000km3熔岩要释放1.6×1013 kgCO23×1012kg的硫和3×1010kg的卤素。一个巨大火成区的累积过程要发生上千次这样的喷发,它使现代人类造成的污染物产生的影响相形见绌120Ma前海底热幔柱喷发形成翁通爪哇海台的体积为36×106km315 Ma前发生的哥伦比亚溢流玄武岩体积为1.3×106km3,释放的CO2分别为5.8×1017 kg2.1×1016 kg


图4  北美火山活动曲线[ Engel and Engel, 1964]

Engel and Engel给出了北美火山喷发曲线Larson给出了1.5亿年以来全球地磁、洋壳产量、古温度、古海平面、黑色页岩的异常变化,与图1-3的变化趋势基本一致。

根据地质和气象等综合数据,表6给出地球自转周期、地质旋回、气候变化和地磁变化的对应规律,与地球自转变化曲线和火山活动变化曲线相对应。特别值得指出的是,地壳相对地核自转减慢对应地磁反向,地壳相对地核自转加快对应地磁正向,这一现象的发现为地球各圈层差异旋转影响地磁反向提供了证据。

理论模型研究和实际测量表明,地球内核自转较快,地壳和地幔自转较慢,形成地球内外圈层的差异旋转,核幔边界不仅是热交换边界,而且是圈层角动量交换的边界。圈层角动量使地壳和地幔自转变快,内核自转变慢,部分动能转化为热能积累在核幔边界。这是地球自转加速对应大规模热幔柱喷发的原因 

1  地球自转周期与地质旋回

Table 1  Earth’s rotation periods andgeological cycles

时间

/Ma

地球

自转

全球

气候

生物灭绝事件

 

火山喷发

形成物         体积/106km3

480

高峰

温暖期


北美火山活动高峰

437

低谷

大冰期

第一次生物大灭绝:4.4亿年前

北美火山活动低谷

370

365

高峰

温暖期

大冰期

第二次生物大灭绝:3.77亿年前

北美火山活动高峰


280

减慢

大冰期

??


北美火山活动减弱

248

减慢

温暖期

??

第三次生物大灭绝:2.51亿年前

西伯利亚暗色岩

230

低谷

大冰期

第四次生物大灭绝:2.03亿年前

北美火山活动低谷

160

加快



三大洋底重大裂解作用

140

加快



香港超级火山

139

加快



三大洋底重大裂解作用

120

高峰

温暖期

不明显 (水下喷发)

翁通爪哇海台36

120




北美火山活动高峰

110

高峰


大规模生物灭绝

凯尔盖朗海台

97




三大洋底重大裂解作用

65



第五次生物大灭绝:0.65亿年前

德干暗色岩

55



陆生哺乳动物灭绝

北大西洋火山边缘

25

低谷

低温



15

加快

变暖

大规模生物灭绝

哥伦比亚河溢流玄武岩1.3

10

高峰

变暖



0

低谷

大冰期

第六次生物大灭绝??

北美火山活动低谷

 

       全球构造形态不改变,全球大幅度的冷暖变化就无法改变。

表2  地球自转周期、地质旋回、气候变化和地磁极性倒转[1,8,16]

Table 2  Earth’s rotation periods, geological cycles and geomagnetic polarity reverse [1,8,16]

地质界线

新生代/现在

中生代/新生代


侏罗纪/白垩纪

古生代/中生代

石炭纪/二叠纪

下古生代/上古生代

年代/102Ma

0

 

0.65

 


 1.36

 

 2.25

 2.80

 3.45

万有引力

常数变化

最小

 



最大

 


最小

 


太阳辐射

最小



最大


最小


地壳自转

减慢



加快


减慢


火山活动

喷发最弱

喷发中等

喷发最强

喷发中等

喷发最弱

喷发中等

海陆变动

大陆为主最大海退

由主要是海变为大陆

最大海侵

由主要是大陆变到海

大陆为主最大海退

由主要是还变到大陆

气候变化

第四纪大冰期


温暖期


石炭二叠纪大冰期


陆海分布类型

大陆集中在北极


大陆分散在赤道


大陆集中在南极


造山作用

生物灭绝

第三纪大褶皱


白垩纪恐龙灭绝


石炭二叠纪大褶皱


地磁极性

反向


正向


反向


https://blog.sciencenet.cn/blog-2277-1183567.html


      结论:改写全球气候历史和生物灭绝历史的重大事件

       发生在大约2.52亿年前的二叠纪-三叠纪生物大灭绝,在短短几万年的时间里,使96%的海洋生物和约70%的陆地生命从地球上永远消失。由于西伯利亚火山岩浆燃烧了大量森林、地下石油和煤炭沉积物,燃烧过程中释放出二氧化碳和甲烷等温室气体,进而导致了大灭绝的发生。澳大利亚山火就是一次未来大灭绝的预演。地下热能和地下温室气体的参与气候变化不容忽视。

       与西伯利亚暗色岩类似,德干暗色岩也发生在大陆,因此可以加速化石燃料燃烧和温室气体超级排放,造成恐龙灭绝重大事件。小行星撞击扩大了这一事件。  

       这表明,太阳能量的长期积累和释放参与和扩大了全球变暖,温室气体和全球变暖的一致性,根源在太阳能量的长期积累和释放,元凶就是太阳能量积累和光合作用的逆反应。

       人类的出现可能改变这一自然规律:化石燃料就是大陆和海洋内的火药桶,超级火山爆发就是导火索,人类开发化石能源,铲除了大陆和海洋内的火药桶,避免了下次超级火山引发的温室气体超级排放,阻止下一次生物大灭绝,变天灾为人类福祉与天人和谐,这应该是天大的好事。

      要温室气体的爆炸式超级排放,还是要温室气体缓慢式人工排放,人类必须做出正确的抉择。

      温室气体减排有利有弊:短期可以维持现状,但不过是扬汤止沸;长期留下后患,造成更严重的生物大灭绝。人类开发化石能源,铲除了大陆和海洋内的火药桶,这才是釜底抽薪。  

      温室气体循环路线图:太阳光合作用将太阳能量和二氧化碳贮存在草木、甲烷和化石燃料矿藏之中,超级火山喷发点燃草木、甲烷和化石燃料,向大气释放出积累的太阳能量和温室气体,导致全球变暖和生物灭绝(高温型);酸雨清洗大陆,将温室气体带入海洋,导致海洋酸化和岩石圈碳酸钙积累,引发大气温室气体降低、生物灭绝(低温型)和气候变冷(参见海底藏冷效应和海底温室气体贮存效应)。  

       一个明显的规律是,温室气体在温暖时期集中在大气,在寒冷期集中在海洋和岩石圈。石炭二叠纪成煤期与生物大灭绝有很好的对应关系。

       温室气体的大规模积聚和排放与太阳能量的长期积累和释放同时进行。人类忽视了后者,夸大了前者。

       人类燃烧尽所有的化石燃料就能使地球回到最暖的中生代吗?如果没有超级火山喷发,答案是肯定的,不能。因为超级火山不仅带来地核的热能,而且带来地球内部的温室气体。

      总之,碳中和要比控制碳排放更科学。人类在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。这是人类与自然和谐共生的明智之举。


参考文献


1.        杨冬红,杨学祥. 全球气候变化的成因初探. 地球物理学进展. 2013, 28(4): 1666-1677.

2.        杨学祥, 陈殿友. 火山活动与天文周期. 地质论评, 1999, 45(增刊): 33-42.

3.        杨冬红, 杨学祥. 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 2013,28(1):58-70。

4.        Mark A. Sephton1, Henk Visscher2, Cindy V. Looy3, et al. Chemical constitution of a Permian-Triassic disaster species. Geology October 2009 v. 37 no. 10 p. 875-878 doi: 10.1130/G30096A.1

5.        Arizona State University. “Oasis effect” in urban parks could contribute to greenhouse gas emissions. ScienceDaily. www.sciencedaily.com/releases/2020/11/201119083931.htm

6.        Burning Fossil Fuels Helped Drive Earth’s Most Massive Extinction, The New York Times. https://www.nytimes.com/2020/11/18/science/extinction-global-warming.html?searchResultPosition=14

7.        杨冬红,杨德彬,杨学祥. 2011a. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 54(4):926-934

8.        杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.




https://blog.sciencenet.cn/blog-2277-1317256.html

上一篇:青海发生5.3级地震:关注12月18-20日潮汐组合
下一篇:厄尔尼诺指数进入上升区间:2021年12月19日晚报
收藏 IP: 103.57.12.*| 热度|

5 杨正瓴 周少祥 范振英 许培扬 文端智

该博文允许注册用户评论 请点击登录 评论 (4 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-7-18 12:34

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部