||
浅议“经典比特”和“量子比特”
看过袁岚峰先生关于量子信息的系列科普博文《你完全可以理解量子信息(4-5)》之后,感到有必要普及“信息”的概念:1948年,数学家香农在题为“通讯的数学理论”的论文中为“信息”所下的定义:“信息是用来消除随机不定性的东西”。
一个“经典比特”,对应一位二进制数,信息容量空间为1比特(只能容纳两个可能的情况中的一个,因为,log22=1,谓之1比特。)。只有当这1比特信息容量空间,被0(或者1)填充、有确定值时,两个可能的情况中的一个情况被排除(不确定性得以消减),才意味着“信息”被写入了1比特信息容量空间;读取这1比特信息容量空间所写入的内容,就获得了1比特信息量;
两个“经典比特”,对应两位二进制数,信息容量空间为2比特(只能容纳四个可能的情况中的一个,因为,log24=2,谓之2比特。)。只有当这2比特信息容量空间,被0(或者1,2,3之一)填充、有确定值时,四个可能的情况中的三个情况被排除(不确定性得以消减),才意味着“信息”被写入了2比特信息容量空间;读取这2比特信息容量空间所写入的内容,就获得了2比特信息量;(更多“经典比特”的情况,照此类推)。
在袁先生博文中,对一个“经典比特”和一个“量子比特”,做了一个形象的比喻:“我们还可以做一个比喻:经典比特是“开关”,只有开和关两个状态(0和1),而量子比特是“旋钮”,就像收音机上调频的旋钮那样,有无穷多个状态(所有的a|0> + b|1>)。显然,旋钮的信息量比开关大得多。”。在袁先生的这个比喻里,实际上犯了将“信息容量”混为“信息量”的错误。在袁先生的比喻中,一个“量子比特”具有无限大的信息容量,但只有令旋钮指定一个特定位置时,才算在这个无限大信息容量空间里,写入了确定的信息,才具有在无限多种可能情况中确定一种情况,排除其它无限多种情况的巨大信息量。如果不能在一个“量子比特”空间里确定地写入特定信息,无法保真读取所写入的特定信息;那么,一个“量子比特”,能够提供的信息量为零!
以下是在袁先生博文后的跟帖,作为举例说明:
[4]李维纲 2018-1-9 19:28
讲得不错。但,所谓“信息”是能够将不确定性减小的东西。用“1”约定代表张三当前正在北京喝茶,“0”代表张三当前不在北京喝茶。有情报员传回一个0或1,使我们对张三当前是否在北京喝茶?——不确定性减少了,我们称为获得了“信息”。如果,情报员传回了一个“量子比特”,这还有任何信息学意义吗?请指教。
[5]李维纲 2018-1-9 19:41
一个量子比特,最根本的特点在于:没有人知道它究竟是0,还是1?(连发送者都不知道!否则,就已经“塌缩”为经典比特了。对吗?),作为接受信息者,给您这样的“信息”,您能接受吗?战时,这样的情报员恐怕会被枪毙一百次吧?
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-31 04:44
Powered by ScienceNet.cn
Copyright © 2007-2024 中国科学报社