A common name given to two theorems established by K. Gödel [1]. Gödel's first incompleteness theorem states that in any consistent formal system containing a minimum of arithmetic ( +, ·, the symbols , and the usual rules for handling them) a formally-undecidable proposition can be found, i.e. a closed formula such that neither nor can be deduced within the system. Gödel's second incompleteness theorem states that if certain natural completeness conditions are met, one can take this formula to be the formula which expresses the consistency of the system. These theorems indicated the failure of Hilbert's program on the foundations of mathematics, which expected a full formalization of all existing mathematics, or at least of a substantial part of it (Gödel's first incompleteness theorem proved that this is not possible), and attempted to justify the resulting formal system by a finite demonstration of its consistency (Gödel's second incompleteness theorem showed that even if all the tools of formalized arithmetic are considered to be finitary, this is still insufficient to prove the consistency of arithmetic).
It is also possible to make a similar analysis of the deductive method, that is to say, of formal axiom systems. This is accomplished by analyzing more carefully the new version of Berry's paradox that was presented. Here we only sketch the three basic results that are obtained in this manner. (See the Appendix).
In a formal system with n bits of axioms it is impossible to prove that a particular binary string is of complexity greater than n+c.
Contrariwise, there are formal systems with n+c bits of axioms in which it is possible to determine each string of complexity less than n and the complexity of each of these strings, and it is also possible to exhibit each string of complexity greater than or equal to n, but without being able to know by how much the complexity of each of these strings exceeds n.
Unfortunately, any formal system in which it is possible to determine each string of complexity less than n has either one grave problem or another. Either it has few bits of axioms and needs incredibly long proofs, or it has short proofs but an incredibly great number of bits of axioms. We say “incredibly”' because these quantities increase more quickly than any computable function of n.
见:Gregory J. Chaitin. Information-Theoretic Computational Complexity. IEEE Transactions on Information Theory, IT-20 (1974), pp. 10-15.