||
[想不明白] 几十页、上百页长的数学证明,真的可靠吗?(阿诺德、Chaitin)
一、阿诺德:复杂的模型几乎毫无用处
弗拉基米尔·阿诺德(Vladimir Igorevich Arnold, 1937-06-12 ~ 2010-06-03),了不起的数学家之一。《二十世纪数学家排名》里列为第13名。
在1998的“On teaching mathematics” 第232页,阿诺德写到:
The longer and fancier is the chain of deductions ("proofs"), the less reliable is the final result.
Complex models are rarely useful (unless for those writing their dissertations).
推导的链(即所谓的“证明”)越长越复杂,最后得到的结论可靠性越低。
复杂的模型几乎毫无用处(除了对那些无聊的专写论文的人)。
图1 截取自 Arnold, 1998, On teaching mathematics 第232页
https://iopscience.iop.org/article/10.1070/RM1998v053n01ABEH000005
二、Chaitin 柴庭:公理系统能力强,证明就短
3. Unfortunately, any formal system in which it is possible to determine each string of complexity less than n has either one grave problem or another. Either it has few bits of axioms and needs incredibly long proofs, or it has short proofs but an incredibly great number of bits of axioms. We say “incredibly”' because these quantities increase more quickly than any computable function of n.
机器翻译:
3.不幸的是,任何能够确定复杂性小于 n 的每个字符串的正式系统都有一个或另一个严重的问题。要么它只有极少量的公理,需要极长的证明,要么它有很短的证明,但有极大量的公理。我们之所以说“难以置信”,是因为这些量的增长速度比 n 的任何可计算函数都快。
图2 1974年 Chaitin 自己原汁原味对 Chaitin 定理的介绍,第13页
https://ieeexplore.ieee.org/document/1055172
三、[想不明白] 几十页、上百页长的数学证明,真的可靠吗?
傻过于嫉妒那些会写出数十页、上百页证明的数学家们了。
参考资料:
[1] Vladimir I Arnol'd ((Arnold). On teaching mathematics [J]. Russian Mathematical Surveys, 1998, 53(1): 229-234. Number 1, February 1998
doi: 10.1070/RM1998v053n01ABEH000005
https://iopscience.iop.org/article/10.1070/RM1998v053n01ABEH000005
[2] Gregory John Chaitin. Information-theoretic computation complexity [J]. IEEE Transactions on Information Theory, 1974, 20(1): 10-15.
DOI: 10.1109/TIT.1974.1055172
https://ieeexplore.ieee.org/document/1055172
https://dl.acm.org/doi/10.1109/TIT.1974.1055172
[3] Vladimir Igorevich Arnold, MacTutor History of Mathematics Archive
https://mathshistory.st-andrews.ac.uk/Biographies/Arnold/
相关链接:
[1] 2022-10-14,[小资料] 阿诺德原理、复杂的模型几乎毫无用处:出自 1998年《On teaching mathematics》
https://blog.sciencenet.cn/blog-107667-1359459.html
[2] 2022-03-01,[科普 + 备课] Chaitin定理(1966年)
https://blog.sciencenet.cn/blog-107667-1327564.html
[3] 2011-08-21,俗解Chaitin定理
https://blog.sciencenet.cn/blog-107667-478066.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-19 10:40
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社