|||
1. 德国科隆大學的H. Frenzel 和 H. Schultes於1934年在研究声纳时首次觀察到聲致發光。
在其實驗過程中兩人希望加快相片顯影的過程,將一座超聲波變換器置入注滿顯影劑的水槽中,事後卻在顯影後的底片上觀察到一些微小的亮點。同時每當超音波開啟時,液體中的氣泡便才會發出光來。早年的實驗中由於水下環境過於複雜,對於這些壽命(半衰期)極短暫的大量氣泡難以做進一步的分析,只有一些简单的描述。
2. 另外,据说N. Marinesco 和 J.J. Trillat於1933年也曾獨立發現此現象,以后收集到资料再补充。
此現象在現代通常也被稱為多氣泡聲致發光(multi-bubble sonoluminescence, MBSL)。
3. 而Felipe Gaitan 和 Lawrence Crum在50多年後的1989年大幅改進了實驗裝置與技術,發現了單氣泡聲致發光(single bubble sonoluminescence, SBSL)。在單氣泡聲致發光中,一顆被限制在聲音的駐波中的氣泡會隨著自身週期性的被壓縮而不斷放出光來。由於這項實驗技術將原本複雜的多氣泡模型簡化為單一穩定氣泡的效應,故有助於更系統性地分析聲光效應的原理。研究人員同時也發現氣泡內部的溫度竟然高到可以熔化鋼鐵的程度。根據估計與假設,氣泡內的溫度可以高達100萬K,這也重新喚起了人們對聲致發光的好奇與興趣。雖然如此高的溫度尚未被確實證明,但近年來由伊利諾大學香檳分校主導的實驗顯示,氣泡內的溫度大約在2萬K左右。
这项1989年的工作具有很强的开创性,相信是诺贝尔奖级别的。
4. 一些在聲致發光的實驗中觀察到的事實:
5. 兩位化學家David J. Flannigan和Kenneth S. Suslick於2005年在《自然》上發表了一篇論文。他們實驗的對象是硫酸裡的氬氣泡,打入聲波後在容器內發現氧離子O2+、一氧化硫、以及位於激發態的氬原子。這代表氣泡中心有著一個熱電漿核。他們指出O2+離子的激發能量和游離能是18電子伏特(eV)左右,不可能是因為單純加熱而達到的。兩位化學家認為這應該是從氣泡中心的不透明电子-空穴等离子体釋放出來的高能電子撞擊得來的。
2002年3月8日,在美國橡樹嶺國家實驗室工作的一名科學家Rusi P. Taleyarkhan利用極強的超音波震盪轟擊全部由氘組成的丙酮,並在容器旁放上中子源以產生更大的氣泡,Taleyarkhan宣稱他觀察到容器中氚含量的上升,代表引發了核融合效應。他在2003年前往普渡大學任教,並繼續發表有關實驗過程的論文。不幸的是,在Taleyarkhan之後沒有其他研究團體能成功地複製他的實驗結果。这就出现了科学问题。
在2006年6月,伊利諾大學香檳分校的Dr. Kenneth S. Suslick在一封寫給普渡大學的電子信件中表示,他質疑Taleyarkhan宣稱的研究成果已經構成一項科學不端行為(scientific misconduct)。Suslick並聲明在這之後他沒有收到任何普渡大學的回信。
但在2006年11月,據說Taleyarkhan的實驗被來自美國拉特諾大學的Edward R. Forringer再次驗證了──不過是在Taleyarkhan自己的普渡大學實驗室裡。但這時普渡大學卻選擇不繼續深入調查,縱使有許多普渡大學的其他教授也提出對這項發現的質疑。美國Chronicle of Higher Education也注意到了一些問題:「在這段時間中,Taleyarkhan先生宣稱有兩組以上的科學家來到他的實驗室,並成功的驗證了氣泡核融合效應,Taleyarkhan先生並強調這兩組研究人員都是專家,而且絕對獨立於他本身的立場。但在對兩組研究人員的訪問中,他們都駁斥了Taleyarkhan先生的這項說法。例如拉特諾大學的物理教授Edward R. Forringer便聲明他自己事實上並不是一位專家,儘管如此,他『還是相信他的實驗結果的確能夠支持氣泡核融合的理論……』。
更精彩的還在後頭,在隔年的2007年,美國國會的專案小組計畫使用聯邦基金來重現Taleyarkhan的實驗結果,在他們的堅持下,普渡大學只好在2007年5月10日宣佈他們將至少增加一組與普渡大學無關的研究人員來研究Taleyarkhan的實驗。對於Taleyarkhan當初宣稱他的實驗已經「獨立地被他人驗證」,專案小組採取「高度懷疑」的態度,並且批評普渡大學使用三位之前已經調查過Taleyarkhan的人員現在再來做再審的動作。Taleyarkhan本人對於專案小組的這項報告表示是「偏頗且過度被誇大」的,但最終還是答應與專案小組合作。2007年9月10日,普渡大學內部的調查委員會決定「某些情事值得做進一步的探討(several matters merit further investigation)」,因此所有研究將從頭開始驗證起,如今物理學界普遍質疑Taleyarkhan的研究成果。
2006年1月27日,美國倫斯勒理工學院的研究員也宣稱他們在沒有其他外加中子源的情形下,利用聲致發光製造出核融合反應,並發表論文於著名的《物理評論快報》上。但至目前為止,這個實驗尚未被任何科學機構的實驗小組重現。这个报道让这个现象更加朴素迷离。
7. 對声致发光現象的物理本质解釋
到現在為止,造成聲光效應的機制仍然沒有被解決。目前用來解釋的理論有: 熱點(hotspot)、 制動輻射(bremsstrahlung radiation)、 碰撞發光、 環形放電(Corona discharge)、 非古典光學(non-classical light)、 穿隧效應(proton tunneling)、 電動力學發光(electrodynamic jets)、 摩擦發光(fractoluminescent jets)(目前因為有相反的實驗結果,通常不再被採信)等等。
目前比较权威的一个解释来自M. Brenner、S. Hilgenfeldt,和D. Lohse在2002年出版了一本60頁的報告Single bubble sonoluminescence" (Reviews of Modern Physics 74, 425,其中對於聲致發光的機制做了詳盡的討論。根據他們所發表的理論,最重要的關鍵在於氣泡中含有少量的惰性氣體例如氬或氙(地球大氣有含有大約1%的氬氣,但其溶解在水中的量對於產生聲致發光來說卻是過多了,理想的狀態是減少成原來的20~40%)以及含量不固定的水蒸氣。經過連鎖的化學反應後會導致氣泡中的氮氣和氧氣在大約100個氣泡膨脹-壓縮週期後被移除,此時氣泡便會開始發光。詳情可見"Evidence for Gas Exchange in Single-Bubble Sonoluminescence", Matula and Crum, Phys. Rev. Lett. 80 (1998), 865-868。
當氣泡收縮的時候,周圍的水會向氣泡中心擠壓,因為慣性的關係而在短時間內對氣泡產生一個相當大的壓力,由此造成的絕熱壓縮會把氣泡內部加熱到大概 10,000 K。在如此高溫的狀況下,不影響透明度的一小部分惰性氣體會被游離,被游離出來的電子與氣體原子互相影響產生制動輻射。當壓力與溫度下降後,游離的電子重新與原子結合,停止發光。這個機制導致一個長約 160 皮秒、有規律的短暫發光。
根據上述這個理論計算出來所放出光的強度和持續時間,大致上能和實驗結果符合,其誤差也不會比做一些簡化假設(例如 假設氣泡各部份的溫度保持相同)來得大很多。因此雖然還有一些細節尚待探討,聲致發光的原理大體上來已經被解決了。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 04:15
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社