|||
英国大数学家凯莱(Arthur Cayley)多产、多能而且多趣——下面是数学史家Eves总结的几点(见《数学圈》):
1)凯莱的数学作品数量与柯西不相上下,两位可能都是仅次于欧拉的人。但谁是第二呢,要统计了二人的出版物才好说。
2)凯莱开始并不以数学为生,在接受剑桥Sadlerian教授之前做过14年的律师。但他总是小心翼翼做法律,免得它受数学兴趣的干扰。在14年律师期间,他发表了200多页的数学论文。
3)凯莱极爱读小说,旅游时读,开会前读,在任何零星的时间里读。他的一生读过几千部小说,不光英文,还有希腊文、法文、德文和意大利文。
4)凯莱是真正英国传统的登山爱好者,常去欧洲大陆登山和长途旅行。据说他讲过,他喜欢爬山的原因是,虽然登山艰辛而劳累,但征服一座山峰的愉悦就感觉像解决了一道数学难题或完成了一个复杂的数学理论。他还说,登山很容易获得那种快感。
5)1842年,21岁的凯莱从剑桥三一学院毕业,获得数学荣誉学位考试的优等成绩,同年,在更难的史密斯奖竞赛中名列第一。
6)凯莱喜欢画画,特别是水彩画,是一位出色的水彩画家。
7)在数学家中凯莱是最冷静和尖锐的,但他不光是数学家,他是数学家与自然爱好者的复合体。
8)1883年,在英国科学促进会主席的就职演讲中,凯莱表达了如下的观点:“很难确定为现代数学划定一个疆域。‘疆域’一词是不对的:我说的是一个充满了美妙风景的疆域——不是平淡无奇的大平原,而是远远浮现在眼前的美丽乡村,那儿的山坡和沟谷、溪流和岩石、森林和鲜花,都等着我们去探幽入微。但正如其他事物的美一样,数学的美也只能感觉而不能解释。”这些话不是学究式的空谈,而是真切反映了对自然的亲近。
【关于那个就职演说,还有一段关于欧几里得几何的话,好像与很多数学家和物理学家的观点不同,值得我们再反思一下:
It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration: and that Lobachevsky constructed a perfectly consistent theory, wherein this axiom was assumed not to hold good, or say a system of non-Euclidean plane geometry. My own view is that Euclid's twelfth axiom in Playfair's form of it does not need demonstration, but is part of our experience - the space, that is, which we become acquainted with by experience, but which is the representation lying at the foundation of all external experience. Riemann's view ... is that, having 'in intellectu' a more general notion of space (in fact a notion of non-Euclidean space), we learn by experience that space (the physical space of our experience) is, if not exactly, at least to the highest degree of approximation, Euclidean space. But suppose the physical space of our experience to be thus only approximately Euclidean space, what is the consequence which follows? Not that the propositions of geometry are only approximately true, but that they remain absolutely true in regard to that Euclidean space which has been so long regarded as being the physical space of our experience.
我们知道那是欧几里得第五公设,老凯说12,不知为什么。所谓Playfair形式(John Playfair,17428-1819,是苏格兰数学家),就是我们在平面几何里学过的那种形式:过直线外一点,有且仅有一条直线与它平行。(欧几里得原来的表述形式很“模糊”:如果一条线段两条直线相交,在某一侧的内角和小于两直角和,那么这两条直线在不断延伸后,会在内角和小于两直角和的一侧相交。)】
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 19:48
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社