路漫漫其修远兮分享 http://blog.sciencenet.cn/u/zhpd55 追求科学,勇于探索,苦海无涯,愿作小舟。

博文

中德合作打破太阳能壁垒:低碳串联电池达到25.7%的效率 精选

已有 4912 次阅读 2024-12-17 19:33 |个人分类:新科技|系统分类:博客资讯

中德合作打破太阳能壁垒:低碳串联电池达到25.7%的效率

诸平

Solar-Cell-With-Passivation-Under-Simulated-Sunlight-777x583.jpg

Fig. 1 Solar cell with passivation in the laboratory under simulated sunlight. Credit: C. Thee Vanichangkul

Schematic-Representation-of-Perovskite-Organic-Tandem-Solar-Cell-Setup-777x595.jpg

Fig. 2 Schematic representation of perovskite-organic tandem solar cell setup. Credit: Felix Lang

Felix-Lang-and-Guorui-He-777x583.jpg

Fig. 3 Felix Lang and Guorui He with perovskite OPV solar cells. Credit: C. Thee Vanichangkul

https://www.uni-potsdam.de/en/headlines-and-featured-stories/detail/2024-11-28-record-efficiency-tandem-solar-cells-made-from-perovskite-and-organic-material

据德国波茨坦大学University of Potsdam20241216日提供的消息,打破太阳能壁垒:低碳串联电池达到25.7%的效率(Smashing Solar Barriers: Low-Carbon Tandem Cells Hit 25.7% Efficiency)。

波茨坦大学的研究人员和中国科学院(Chinese Academy of Sciences)的研究人员合作开发了一种新的串联太阳能电池,通过将钙钛矿与新型有机吸收剂结合,效率达到25.7%,为太阳能技术树立了新标准。

提高太阳能电池的效率以减少对化石燃料的依赖是太阳能电池研究的主要目标。结合有选择地吸收短波和长波的材料,如光谱中的蓝/绿和红/红外部分,是一种众所周知的策略,可以最大限度地利用阳光并提高效率。

太阳能电池最好的吸收部分目前由传统材料制成,如硅或铜铟镓硒化物(copper indium gallium selenide简称CIGS)。然而,这些材料需要较高的加工温度,这导致了相对较高的碳足迹。

太阳能电池效率的突破(Breakthroughs in Solar Cell Efficiency)

来自波茨坦大学和中国科学院的一组研究人员,将钙钛矿和有机太阳能电池结合在一起,这两种电池都是在低温下处理的,碳足迹低,创造了一种串联太阳能电池,达到了创纪录的25.7%的光电转换效率。

该团队由波茨坦大学物理学家Felix Lang博士、中国科学院化学研究所(Institute of Chemistry, Chinese Academy of Sciences, Beijing, China)的孟磊(Lei Meng教授和李永舫Yongfang Li教授领导,他们在《自然》Nature)杂志上发表的一篇研究报告中详细介绍了他们的工作。原文详见:Xin Jiang, Shucheng Qin, Lei Meng, Guorui He, Jinyuan Zhang, Yiyang Wang, Yiqiao Zhu, Tianwei Zou, Yufei Gong, Zekun Chen, Guangpei Sun, Minchao Liu, Xiaojun Li, Felix Lang, Yongfang Li. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature,  2024, 635: 860–866. DOI: 10.1038/s41586-024-08160-y. Published: 14 October 2024. https://doi.org/10.1038/s41586-024-08160-y

参与此项研究的有来自中国科学院化学研究所、中国科学院大学(University of Chinese Academy of Sciences, Beijing, China)、德国波茨坦大学物理与天文学研究所(Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany)以及中国苏州大学化学、化工与材料科学学院(College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China)的研究人员。

Felix Lang说:“这种新组合的效率达到创纪录的25.7%并不容易,只有结合两项重大突破才有可能实现。”

首先,孟磊和李永舫合成了一种新型的红光/红外光吸收有机太阳能电池,将其吸收进一步扩展到红外光区。他解释说:“串联太阳能电池仍然受到钙钛矿层的限制,如果调整为只吸收太阳光谱的蓝/绿部分,则会显示出强烈的效率损失。为了解决这个问题,我们在钙钛矿上使用了一种新的钝化层,减少了材料缺陷,提高了整个电池的性能。”

本研究得到了中国科学院战略重点发展计划项目{Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0520102)}、中国科技部重点研究发展计划项目{National Key Research and Development Program of China (2019YFA0705900) funded by MOST}、中国国家自然科学基金项目{National Natural Science Foundation of China (52173188 and 52103243)}、中国广东省基础与应用基础研究重大项目{Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007)}以及大众汽车基金会(Volkswagen Foundation for funding through the Freigeist Program)的资助。

上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道

李永舫/孟磊团队在高效稳定反式钙钛矿太阳能电池研究中取得重要进展

Abstract

In recent years, perovskite has been widely adopted in series-connected monolithic tandem solar cells (TSCs) to overcome the Shockley–Queisser limit of single-junction solar cells. Perovskite–organic TSCs, comprising a wide-bandgap (WBG) perovskite solar cell (pero-SC) as the front cell and a narrow-bandgap organic solar cell (OSC) as the rear cell, have recently drawn attention owing to the good stability and potential high power conversion efficiency (PCE)1,2,3,4. However, WBG pero-SCs usually exhibit higher voltage losses than regular pero-SCs, which limits the performance of TSCs5,6. One of the main obstacles comes from interfacial recombination at the perovskite–C60 interface, and it is important to develop effective surface passivation strategies to pursue higher PCE of perovskite–organic TSCs7. Here we exploit a new surface passivator cyclohexane 1,4-diammonium diiodide (CyDAI2), which naturally contains two isomeric structures with ammonium groups on the same or opposite sides of the hexane ring (denoted as cis-CyDAI2 and trans-CyDAI2, respectively), and the two isomers demonstrate completely different surface interaction behaviours. The cis-CyDAI2 passivation treatment reduces the quasi-Fermi-level splitting–open circuit voltage (Voc) mismatch of the WBG pero-SCs with a bandgap of 1.88 eV and enhanced its Voc to 1.36 V. Combining the cis-CyDAI2-treated perovskite and the organic active layer with a narrow bandgap of 1.27 eV, the constructed monolithic perovskiteorganic TSC demonstrates a PCE of 26.4% (certified as 25.7%).



https://blog.sciencenet.cn/blog-212210-1464785.html

上一篇:治疗不是减少癌症死亡的唯一关键
下一篇:你最喜欢的零食可能会增加患癌症的风险
收藏 IP: 111.20.218.*| 热度|

4 郑永军 杨正瓴 崔锦华 晏成和

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-21 22:59

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部