||
归并排序(merge sort)是一种利用分治策略(divide and conquer)进行排序的算法,算法复杂度为 $\Theta (nlog_{2}n)$ .
filename: merge_sort
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function result=merge_sort(num_array)
% result=merge_sort(num_array) ascending
% algorithm complexity: theta(n*log2(n))
N=length(num_array);
% split num_array to two sub sorted array
if floor(N/2)>=2
sub_sorted_l=merge_sort(num_array(1:floor(N/2)));
sub_sorted_r=merge_sort(num_array(floor(N/2)+1:N));
else % sub array with no more than 2 elements
sub_sorted_l=num_array(1);
sub_sorted_r=num_array(2:end);
if length(sub_sorted_r)>1 % sort sub_sorted_r which has 2 elements
if sub_sorted_r(1)>sub_sorted_r(2)
sub_sorted_r([1 2])=sub_sorted_r([2 1]);
end
end
end
kl=1; % index for sub_sorted_l
kr=1; % index for sub_sorted_r
k=1; % index for result
while kl<=length(sub_sorted_l) && kr<=length(sub_sorted_r)
if sub_sorted_l(kl)<sub_sorted_r(kr) % ascending sort
result(k)=sub_sorted_l(kl); % result(k)
kl=kl+1;
else
result(k)=sub_sorted_r(kr);
kr=kr+1;
end
k=k+1;
end
% after one sub array is exhausted, put the rest of the other into the result
if kl>length(sub_sorted_l)
for ki=0:(length(sub_sorted_r)-kr)
result(k+ki)=sub_sorted_r(kr+ki);
end
elseif kr>length(sub_sorted_r)
for ki=0:(length(sub_sorted_l)-kl)
result(k+ki)=sub_sorted_l(kl+ki);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
运行示例:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-16 21:23
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社