lixinhai的个人博客分享 http://blog.sciencenet.cn/u/lixinhai

博文

My teaching materials for biostatistics

已有 6055 次阅读 2012-4-16 14:04 |系统分类:教学心得| teaching

Here, I attach my presentation documents for the course of biostatistics that I am teaching in the Graduate University of Chinese Academy of Sciences. There are 13 pdf files in total, each for a three-hour-long lecture. I thank Dianmo Li, David Schneider, Matt Litvak, who taught me biostatistics, and allowed me to use their cases and materials for teaching. I also cited some contents from Zar's book (Zar 1999), and others.

Since 2011, I use R instead of SAS as the analysis tool for this course. I provided R code for all case studies.

The syllabus and the links for downloading are:

 

Download: 1_Introduction to biological statistics.pdf

Lecture 1 Introduction to biological statistics

l  Brief history of biostatistics

l  Key persons

l  Major contents of biostatistics

l  Basic concepts

²  Data types

²  Descriptive statistics

Download: 2_Probability distribution.pdf

Lecture 2 Probability distribution

l  Probability theory

l  Common distributions of random variables

²  Binomial distribution

²  Poisson distribution

²  Negative binomial distribution

²  Normal distribution

²  Chi square distribution

Download:  3_Hypothesis Testing 1.pdf

Lecture 3 Hypothesis testing 1

l  What is hypothesis testing?

l  Standard procedures

l  Case studies

²  T test and Z test

²  Situations of one tail and two tails

²  One sample hypothesis tests and two samples hypothesis tests

²  Paired test

Download: 4_Hypothesis Testing 2.pdf

Lecture 4 Hypothesis testing 2

l  Philosophy of hypothesis testing

l  Type I and Type II Errors

l  Chi-square test

l  Power of test

Download: 5_ANOVA_1.pdf

Lecture 5 Analysis of variance (ANOVA) 1

l  Rationale of ANOVA

l  Compared with T test, Chi-square test

l  Generic Recipe of general linear model

l  One-way ANOVA

l  Random blocked design

l  Two-way ANOVA

Download: 6_ANOVA_2.pdf

Lecture 6 Analysis of variance (ANOVA) 2

l  Three-way ANOVA

l  Latin Square Design

l  Repeated measures ANOVA

l  Hierarchical ANOVA

l  Split Plot Design

l  Mixed-effects models

Download: 7_Simple Linear regression and correlation.pdf

Lecture 7 Simple linear regression and correlation

l  Rationale of simple linear regression

l  Least square

l  Regression coefficient (slope) and intercept

l  Significance of a regression

l  Assumptions of regression analysis

l  Applications of simple linear regression

l  Rationale of simple linear correlation

l  Coefficient of Correlation

l  Power and sample size in correlation

Download: 8_ANCOVA.pdf

Lecture 8 Analysis of covariance (ANCOVA)

l  Rationale of Analysis of covariance

l  Assumptions of Analysis of covariance

l  Compared with ANOVA and regression

l  Case studies

l  Coding convention of R

Download: 9_Data transformation and Nonparametric Statistics.pdf

Lecture 9 Data transformation and Nonparametric statistics

l  Data transformation

²  Logarithmic transformation

²  Square root transformation

²  Arcsine transformation

²  Reciprocal transformation

²  Square transformation

²  Box-Cox transformation

l  Rationale of nonparametric statistics

l  Sign test

l  Wilcoxon signed rank test

l  Wilcoxon rank sum test

l  Kruskal-Wallis test

l  Friedman’s test

l  Bootstraping

Download: 10_Multivariate analysis 1.pdf

Lecture 10            Multivariate analysis 1

l  Multiple regression

²  Linear regression

²  Non-linear regression

²  Evaluating multiple regression model

l  Multiple correlation

l  Partial correlation

Download: 11_Multivariate analysis 2.pdf

Lecture 11            Multivariate analysis 2

l  Cluster analysis

l  Discriminant analysis

l  Principal component analysis

l  Factor analysis

l  Correspondence analysis

Download: 12_Generalized linear models.pdf

Lecture 12            Generalized linear model

l  Rationale of Generalized linear model

l  Logistic Regression

²  Assumptions

²  Biological means of coefficients

²  Maximum likelihood estimation

²  Goodness of fit

l  Structure of generalized linear model

²  Random component

²  Systematic component

²  Link function

l  Compared with general linear model

l  Case studies

Download: 13_Common errors and advanced models.pdf

Lecture 13            Common errors, sample survey and advanced models

Common errors

l  Normality

l  Homogeneity

l  Interaction

l  Multicollinearity

l  Autocorrelation

l  Outliers

l  Zero trouble

Sample survey

Simple Random Sampling (SRS)

Stratified Sampling

Systematic Sampling

Cluster Sampling

Multistage Sampling

Advanced models

 

 

 

 

 

 

 



https://blog.sciencenet.cn/blog-661364-559901.html

上一篇:当谣言碰上统计:谈谈发改委打飞机
下一篇:节约粮食的传统观点已经过时了
收藏 IP: 159.226.67.*| 热度|

2 赵斌 李红

发表评论 评论 (10 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-27 05:05

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部