twhlw的个人博客分享 http://blog.sciencenet.cn/u/twhlw

博文

对未来人机融合智能领域的思考 精选

已有 4248 次阅读 2020-1-9 13:31 |个人分类:2020|系统分类:科研笔记

人类文明的演化粗略可划分为西方文明和东方文明,人类对智能领域的理解也可大致划分为东西方这两大体系。人工智能领域的发展主要是延续了西方文明的科技脉络:逻辑+实验,而作为更为抽象的人性智能领域的反映,东方文明也起到了举足轻重的作用:洞察+平衡,也可以认为西方偏逻辑、算法,东方侧非逻辑、算理。

未来的人机融合智能形式需要解决的就是把东西方的合理部分有机地整合在一起,形成一套崭新的智能适配机理,这种适配性包括两部分,一部分是相互适应,一部分是互相配合。若把机器看成是建立在确定性数据、算法、算力基础上的物体,那么人则应是建立在随机性知识、算理、算计基础上的物体,其中的知识具有主观性、强弥聚、富弹跳、不确定的特性。

某种意义上说,智能就是寻找最好替代的过程,这里的替代包括替代物、替代方案、替代系统等,寻找就是计算加上算计的混合处理过程,算计常常涉及宏观方向和内在道理,算法往往关联具体过程和方法手段。算计不是简单的计算逆过程。人的算计涉及显性、隐性知识,侧重价值化与事实性的融合,人和机器的计算包括可描述中可程序化的显性知识,聚焦事实性。机器计算中很难既对立又统一,而算计中却常常可以以和为贵。

无论人工智能还是人类智能,都有着一个共同的缺点:容易自我伤害,即聪明反被聪明误。因此在人机融合智能的数据、信息、知识处理中,必须建立具有预见性的责任分配机制,及明确是否、何时以及在何种程度上使用何种算法系统。因而未来的人机融合智能中既应有技术也应有艺术,即凡是涉及到人机融合的智能,无论概念、定义、推理、决策都不是固定不变的,在态、势之间还有一个中间区域——态势区:其中既有态也有势,既有事实也有价值,既有数据也有信息知识,既有公理也有非公理,既有直觉(非逻辑)也有逻辑,既有反思也有反馈(反思是动态的虚实复合反馈)。

目前,人机交互缺乏动态性,之间的定性分析还尚未完成,定量更为困难,例如,如何让机器“明白”人不同阶段的意图变化?如何让人理解机器的各种计算结果,有时候,大而全的数据库、知识库也可能是大的障碍,因为很多变化因素是很难(或还不能)用参数表示的,比如一个婴儿的哭可以是因为饿了,或是痛了,或是病了,或是困了......也可能是应为上述综合因素造成的,但是这种复合情况就很难用固定的数据库、知识库(甚至常规的知识图谱)进行表征。机器强化学习中的奖惩机制与人类的奖惩机制相差甚大,人类的奖惩除了“利”(事实)之外还有“义”(价值);同样,机器的态、势、感、知机理与人类的态、势、感、知机理都大相径庭,机器基本上还是“以理服人”,而人类则是“情理交融”,机器与人的交互是两者单向的,而人与机器的交流则是人机环境系统之间多向的人机、机机、人环、机环、人机环,其中不但存在着大量的“交”更有更多的“互”。人是环境的主动部分,机器只是人造的被动工具,例如现在许多机器的界面(如手机各种提醒方式)是不会随环境、任务、人的变化而随机应变的。

人类一般是通过日常常识进行关联-判断,有些复杂的推理还与动态的预期有关;而机器是通过不完备的数据非(人类)常识连接-分析,没有类人的预期机制。从根本上说,机器的聪明、狭隘与人类的聪明、狭隘是不同的,人类处理问题的模型是在无限开放/非线性环境下不断跨域融合的创造型认知算理模型,而机器处理问题的模型是在有限封闭/线性环境下的经验型计算算法模型。目前,对于所有重要的人机系统而言。最终的裁判权还是人,这是因为这些问题的实质不仅是科学技术问题还涉及大量的环境噪声、社会人文、伦理法律等非科学技术问题。人工(机器)智能是人们用逻辑编写固定的事实算法,考虑的是规则的搭配,如用手拿筷子或刀叉吃饭,而人类是用非逻辑(混合了事实、情感的更高阶逻辑)进行的动态价值算法,更多的是恰当的应变,如除了手拿筷子或刀叉之外,还可以用脚或其它工具吃饭。人工智能为“是不是”功能,人类智能是“应不应”能力,功能是工具非适应性的被动实现,能力是生命适应性的主动实现。人还不了解自己,尤其是没有真正认识人的认知与感觉形成的真正过程和实质。人类的神经网络并非麦卡洛克-皮茨逻辑神经元网络,而是立体交织而成的多模态生物组织,人是环境的,很少有人在夏天无意识到下雪的情形,能否对自身/自我的行为的觉察和意识常常是人机的重要区别。

真实的智能并不是一开始就绝对的正确,也可能一开始就犯方向性错误,但在过程中不断地实时调整,过程中恰当地调整程序和时机、方式或许更能表征智能的大小和好坏。如海森伯格所言:“任何理解最终必须根据自然语言,因为只有在那里我们才能确实地接触到实在。”。实际上,小孩子的语言与成人的语言是不同的,同一个概念或语句,都带有某种发现和试探性,情感性多于知识性,价值性多于事实性,虚拟大于真实,ta在玩味这个概念或语句,总是在可复制和不可复制之间找到一条最佳的道路来达成自我共识,并在未来能够较准确地迁移到其他某个情境任务中去。这个过程不是照抄照搬,而是有机化学了之后的任务和情境融合。也许可以把维特根斯坦《逻辑哲学论》的第一二句改为“世界是一切发生的事情和未发生的事情。”和“世界是由事实和价值构成的,而不是由事物构成的。”更为准确吧!

有位朋友(纽约老熊)认为:“其实,任何系统大到一定程度,都会有可解释性的问题。深度学习是特别如此,因为没有人知道巨大数目的参数是怎么具体作用的。其他的系统,举例说,某个推理系统,如果大到一定程度,其表现的行为很难是精确可知的。不过,原则上是可知的,如果不计代价。这和(机器)深度学习形成对照。”。语义的核心在于价值性,可解释性最大的困难在于语义的理解和说明,学习是为了建立事实联结,理解是为了实现价值联系,两者之间在进行相互重构的同时也存在着从事实到价值之间的巨大鸿沟。与机器学习不同,人类的学习是复合事实与价值的联结。当前,是否创造出新的可演化的机器学习模型是衡量是否是新一代人工智能的试金石,当今,机器学习不可能由一种算法统治,必然是由各种数学模型所构成,根据具体应用的不同,选择最适应的机器学习模型,当然机器学习一定有对应用的范围的适应性,有适应多领域应用的,也有仅适应单一领域的。在现阶段的算法领域中不可能产生比人机融合学习更强大的算力的任何模型,一套人机融合的计算计系统或算计算系统可能更能代表未来智能领域的发展趋势吧。

随着新一轮科技革命的发展,特别是网络通信技术的突破和人工智能技术的加强,人机融合领域也进入了新的时代。在当前的这个时代,人机环境系统关系的内容和形式与以往有很大的不同,并导致人机融合策略的选择和交互策略的效果都与以往不一样了。在此情况下,以传统的人机交互观念和价值观念来理解当前的人机融合智能,很可能使这方面的研究陷入被动局面。因此,我们需要突破事实和价值分析等传统思维来理解当前的人机融合智能化问题和关系。任何智能都是针对具体问题提出的新解决方案,然而原有问题解决的同时必然会产生新的问题,因此就需要进行新的智能来解决新问题。这就决定了人机融合智能只有进行时,没有完成时。

mmexport1565970688761.jpg


智能是有限的,而智慧却是无限的



https://blog.sciencenet.cn/blog-40841-1213473.html

上一篇:人机融合智能时代的人心思考
下一篇:人机融合中的深度态势感知思考
收藏 IP: 123.112.15.*| 热度|

5 刘钢 陈志飞 黄永义 武夷山 周健

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 02:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部