Nuclear Science and Techniques分享 http://blog.sciencenet.cn/u/sunhua189 NST报道核科学与技术研究领域的科学发现、技术创新和重要成果

博文

[转载]快速核测量促进清洁能源

已有 361 次阅读 2024-5-7 21:47 |系统分类:论文交流|文章来源:转载

Article title: A fast forward computational method for nuclear measurement using volumetric detection

文章标题:采用体积检测的快速前向核测量计算方法

DOI: 10.1007/s41365-024-01393-6

一句话概要:

This research introduces a groundbreaking Fast Forward Computational Method for nuclear measurement, significantly improving the speed and accuracy of geological analysis to support more efficient and sustainable energy exploration.

本研究推出了一种划时代的快速前向计算方法用于核测量,显著提高了地质分析的速度和准确性,以支持更高效和可持续的能源勘探。

2023_NST_Article_08_v3科学网.jpg

The Novelty (What)  

创新性(主要内容)

This research introduces a Fast Forward Computational Method (FFCM) for nuclear measurement, marking a significant progress in computational in-situ models for geological environments. By integrating volumetric detection constraints, this novel computational method significantly enhances the speed and accuracy of detector responses in complex geological settings. The FFCM has been rigorously tested and verified using a neutron porosity tool, demonstrating a maximum relative error of just 6.80% compared to traditional Monte Carlo simulations, with the added advantage of real-time application capabilities. It performs these calculations in less than a second, thereby meeting the real-time application requirements for field use. This innovation not only showcases a leap forward in nuclear measurement techniques but also opens the door for future advancements in real-time geological analysis and broader application in complex environmental conditions.

本研究提出了一种用于核测量的快速前向计算方法(FFCM),在地质环境计算原位模方面取得了重大进展。该方法通过融合体积检测限制,显著增强了探测器在复杂地质环境中的响应能力和准确度。FFCM已经通过中子孔隙度测量工具的严格测试和验证,与传统的蒙特卡洛模拟法相比,其最大相对误差不超过6.80%,并且具备了实时应用的能力。它能够在一秒钟内完成计算,满足现场实时使用的需求。这一创新技术不仅标志着核测量技术的一大飞跃,也为实时地质分析的未来发展以及复杂环境条件下更广泛的应用开拓了新的道路。

The Background (Why)

研究背景(主要原因)

As the exploration and development of unconventional oil and gas reservoirs become increasingly vital to meeting global energy demands, accurate reservoir evaluation faces significant challenges due to the complex lithologies and environmental conditions present. Traditional nuclear measurement tools, while crucial, often fall short in providing accurate formation information due to these complexities. The limitations of existing methods, including the need for multiple tools and the heavy reliance on operator expertise, have highlighted a significant gap in efficient and reliable reservoir characterization. The thesis of this research proposes a novel solution to these challenges by introducing a Fast Forward Computational Method (FFCM) that incorporates volumetric detection constraints for optimizing detector response models. This approach represents a significant leap forward, offering a more accurate, efficient, and cost-effective method for nuclear measurement in complex reservoirs.

随着全球能源需求的增加,非常规油气藏的勘探和开发日益成为关键。准确的储层评估因此面临复杂岩性和环境条件的挑战。尽管传统核测量工具至关重要,但在这些复杂条件下往往难以提供准确的地层信息。现有方法的限制,比如需要多种测量工具和过分依赖操作员的专业技能,凸显了在有效和可靠的储层特征描述上存在的巨大差距。针对这一问题,本研究引入了一种创新的解决方案:一种快速前向计算方法(FFCM),通过整合体积检测限制来优化探测器的响应模型,为复杂储层的核测量提供了一种更准确、更高效且成本效益更高的方法。

The SDG impact (Big Why)

SDG影响力(研究意义)

In the quest to harness energy resources more efficiently and sustainably, the latest advancements in nuclear measurement techniques come as a beacon of innovation in addressing the critical need for improved exploration and extraction methodologies. This research directly contributes to Sustainable Development Goal 7 (Affordable and Clean Energy) by enabling more efficient petroleum extraction processes, which can reduce environmental impacts and improve the affordability of energy resources. Additionally, it supports Sustainable Development Goal 9 (Industry, Innovation, and Infrastructure) by fostering innovation in the energy sector's infrastructure, promoting sustainable industrialization.

在追求更高效和可持续的能源资源的过程中,核测量技术的最新进展代表了创新的前沿,旨在满足改善勘探和开采方法的关键需求。通过促进更高效的石油开采过程、减少环境影响和提高能源资源的经济性,这项研究直接贡献于实现可持续发展目标7(确保可负担的清洁能源)。此外,通过在能源行业基础设施中推广创新,本研究还支持可持续发展目标9(建设韧性基础设施、促进包容性和可持续的工业化,并促进创新)。



https://blog.sciencenet.cn/blog-3474219-1433090.html

上一篇:[转载]无损中子技术促进材料研究与保护的发展
下一篇:[转载]陕西师范大学郑华研究员:非对称碰撞中的粒子模式——Tsallis热力学方法
收藏 IP: 117.81.213.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-20 21:41

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部