|
aBIOTECH | 基因编辑助力作物改良——2024『 基因编辑 』专刊正式上线!
Special Issue Editors
点击题目阅读原文
01
陈其军团队优化LbCas12a变体使其在拟南芥基因组编辑中达到实用化程度
Cite this article:Xin, C., Qiao, D., Wang, J. et al. Enhanced editing efficiency in Arabidopsis with a LbCas12a variant harboring D156R and E795L mutations. aBIOTECH 5, 117–126 (2024). https://doi.org/10.1007/s42994-024-00144-w
0202
Cite this article:Li, Y., Li, S., Li, C. et al. Fusion of a rice endogenous N-methylpurine DNA glycosylase to a plant adenine base transition editor ABE8e enables A-to-K base editing in rice plants. aBIOTECH 5, 127–139 (2024). https://doi.org/10.1007/s42994-024-00138-8
03
中山大学李剑峰团队开发富集多基因CRISPR突变体和剔除Cas9转基因的双功能筛选系统
Cite this article: Wang, FZ., Bao, Y., Li, Z. et al. A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in Arabidopsis. aBIOTECH 5, 140–150 (2024). https://doi.org/10.1007/s42994-023-00132-6
04
Cite this article: Panda, D., Karmakar, S., Dash, M. et al. Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot. aBIOTECH 5, 151–168 (2024). https://doi.org/10.1007/s42994-024-00139-7
05
拜耳作物科学研究团队在大豆和玉米中成功开发基因型灵活的转化和编辑技术
Cite this article: Valentine, M., Butruille, D., Achard, F. et al. Simultaneous genetic transformation and genome editing of mixed lines in soybean (Glycine max) and maize (Zea mays). aBIOTECH 5, 169–183 (2024). https://doi.org/10.1007/s42994-024-00173-5
06
Efficient genome editing in rice with miniature Cas12f variants
万建民/谭俊杰团队报道水稻超迷你CRISPR-Cas12f基因编辑工具
Cite this article: Ye, Z., Zhang, Y., He, S. et al. Efficient genome editing in rice with miniature Cas12f variants. aBIOTECH 5, 184–188 (2024). https://doi.org/10.1007/s42994-024-00168-2
07
Developing a CRISPR/FrCas9 system for core promoter editing in rice
Cite this article: Wang, H., Ding, J., Zhu, J. et al. Developing a CRISPR/FrCas9 system for core promoter editing in rice. aBIOTECH 5, 189–195 (2024). https://doi.org/10.1007/s42994-024-00157-5
08
Genome editing toward biofortified soybean with minimal trade-off between low phytic acid and yield
Cite this article: Lin, W., Bai, M., Peng, C. et al. Genome editing toward biofortified soybean with minimal trade-off between low phytic acid and yield. aBIOTECH 5, 196–201 (2024). https://doi.org/10.1007/s42994-024-00158-4
09
Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica
赵建军/李君团队扩展芸薹属蔬菜中CRISPR/Cas9基因编辑靶向范围
Cite this article: Li, W., Li, X., Wang, C. et al. Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica. aBIOTECH 5, 202–208 (2024). https://doi.org/10.1007/s42994-024-00155-7
10
The RUBY reporter for visual selection in soybean genome editing
Cite this article: Chen, L., Cai, Y., Liu, X. et al. The RUBY reporter for visual selection in soybean genome editing. aBIOTECH 5, 209–213 (2024). https://doi.org/10.1007/s42994-024-00148-6
11
Efficient and precise genomic deletion in rice using enhanced prime editing
任雯/杨进孝/赵久然团队利用增强型引导编辑技术实现高效精确的基因组片段缺失
Cite this article: Liu, M., Zhang, X., Xu, W. et al. Efficient and precise genomic deletion in rice using enhanced prime editing. aBIOTECH 5, 214–218 (2024). https://doi.org/10.1007/s42994-024-00153-9
12
谢卡斌团队通过引入C末端移码突变获得可育和可遗传的MAPK/RLK基因敲除突变体
Cite this article: Zhang, Y., Cui, MM., Ke, RN. et al. C-terminal frameshift mutations generate viable knockout mutants with developmental defects for three essential protein kinases. aBIOTECH 5, 219–224 (2024). https://doi.org/10.1007/s42994-024-00165-5
13
Genome editing in plants using the TnpB transposase system
Cite this article: Li, Q., Wang, Y., Hou, Z. et al. Genome editing in plants using the TnpB transposase system. aBIOTECH 5, 225–230 (2024). https://doi.org/10.1007/s42994-024-00172-6
14
Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun?
Cite this article: Puchta, H. Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun? aBIOTECH 5, 231–238 (2024). https://doi.org/10.1007/s42994-023-00130-8
15
Cite this article: Lukasiewicz, J.M., van de Wiel, C.C.M., Lotz, L.A.P. et al. Consumer transparency in the production chain for plant varieties produced using new genomic techniques. aBIOTECH 5, 239–246 (2024). https://doi.org/10.1007/s42994-024-00142-y
16
Exploiting viral vectors to deliver genome editing reagents in plants
万建民/董小鸥团队综述植物病毒载体在基因编辑元件递送中的应用
Cite this article: Shen, Y., Ye, T., Li, Z. et al. Exploiting viral vectors to deliver genome editing reagents in plants. aBIOTECH 5, 247–261 (2024). https://doi.org/10.1007/s42994-024-00147-7
17
Integrating machine learning and genome editing for crop improvement
Cite this article: Chen, L., Liu, G. & Zhang, T. Integrating machine learning and genome editing for crop improvement. aBIOTECH 5, 262–277 (2024). https://doi.org/10.1007/s42994-023-00133-5
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-23 06:38
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社