YucongDuan的个人博客分享 http://blog.sciencenet.cn/u/YucongDuan

博文

Old: Conversion of the Semantics of DIKWP*DIKWP (初学者版)

已有 118 次阅读 2024-9-29 11:50 |系统分类:论文交流

Conversion of the Semantics of Data, Information, and Knowledge within the DIKWP*DIKWP Interaction Space

Yucong Duan

International Standardization Committee of Networked DIKWfor Artificial Intelligence Evaluation(DIKWP-SC)

World Artificial Consciousness CIC(WAC)

World Conference on Artificial Consciousness(WCAC)

(Email: duanyucong@hotmail.com)

Abstract

Within the Data-Information-Knowledge-Wisdom-Purpose (DIKWP) model, the seamless transformation and conversion of cognitive components—Data, Information, and Knowledge—are pivotal for effective human and artificial intelligence (AI) collaborations. This document delves into the conversion processes of the semantics of Data, Information, and Knowledge within the DIKWP*DIKWP interaction space. By elucidating the mathematical frameworks and providing detailed examples, we aim to offer a comprehensive understanding of how raw Data is transformed into structured Information and subsequently into actionable Knowledge. This exploration not only enhances the theoretical foundation of the DIKWP model but also provides practical insights for mitigating communication deficiencies such as the 3-No ProblemsIncomplete Input/Output, Inconsistent Input/Output, and Imprecise Input/Output—within cognitive interactions.

1. Introduction

The DIKWP model serves as a foundational framework for categorizing cognitive processes into five interconnected components: Data (D), Information (I), Knowledge (K), Wisdom (W), and Purpose (P). Effective collaboration between stakeholders, whether human or AI, relies heavily on the efficient conversion and integration of these components. Understanding the semantics—the meaning and interpretation—of Data, Information, and Knowledge, and how they interrelate through conversion processes, is essential for optimizing communication and decision-making.

This document focuses on the conversion of the semantics of Data, Information, and Knowledge within the DIKWP*DIKWP interaction space. We present mathematical representations of these conversions, supported by detailed examples that illustrate their practical applications and implications.

2. Semantic Foundations of DIKWP Components

Before delving into the conversion processes, it is crucial to establish a clear understanding of the semantics associated with Data, Information, and Knowledge within the DIKWP model.

2.1 Data (D): "Sameness"

Definition:Data represents raw, unprocessed facts or observations. In the DIKWP model, Data embodies "sameness" through shared semantic attributes, allowing different instances to be categorized under the same concept based on these commonalities.

Semantic Attributes:

S={f1,f2,…,fn}S = \{f_1, f_2, \dots, f_n\}S={f1,f2,,fn}

Where fif_ifi represents a semantic feature of the Data concept.

Mathematical Representation:

D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

2.2 Information (I): "Difference"

Definition:Information is processed Data that highlights patterns, relationships, and distinctions. It embodies "difference" by emphasizing varying semantic attributes, facilitating the identification of trends, anomalies, and correlations.

Semantic Attributes:

D={g1,g2,…,gm}D = \{g_1, g_2, \dots, g_m\}D={g1,g2,,gm}

Where gig_igi represents a semantic feature of the Information concept.

Mathematical Representation:

I={i∣i encapsulates D}I = \{ i \mid i \text{ encapsulates } D \}I={ii encapsulates D}

2.3 Knowledge (K): "Completeness"

Definition:Knowledge is the organized and contextualized Information that forms a coherent understanding of concepts. It embodies "completeness" by integrating comprehensive semantic attributes, enabling informed decision-making and problem-solving.

Semantic Attributes:

C={h1,h2,…,hk}C = \{h_1, h_2, \dots, h_k\}C={h1,h2,,hk}

Where hih_ihi represents a semantic feature of the Knowledge concept.

Mathematical Representation:

K={k∣k encompasses C}K = \{ k \mid k \text{ encompasses } C \}K={kk encompasses C}

3. Conversion Processes: From Data to Information to Knowledge

The conversion from Data to Information and subsequently to Knowledge involves systematic processing and transformation of semantic attributes. This section outlines the mathematical frameworks governing these conversions and provides illustrative examples.

3.1 Conversion from Data to Information

Objective:Transform raw Data into meaningful Information by identifying patterns, relationships, and distinctions.

Mathematical Framework:

  1. Data Aggregation:

    D={d1,d2,…,dn}\mathbf{D} = \{ d_1, d_2, \dots, d_n \}D={d1,d2,,dn}

    Aggregate Data instances sharing semantic attributes SSS.

  2. Pattern Identification:Utilize statistical or machine learning techniques to detect patterns within the aggregated Data.

    Patterns=IdentifyPatterns(D)\text{Patterns} = \text{IdentifyPatterns}(\mathbf{D})Patterns=IdentifyPatterns(D)

  3. Information Generation:Formulate Information by highlighting identified patterns and relationships.

    I={i1,i2,…,im}whereij=Patternj\mathbf{I} = \{ i_1, i_2, \dots, i_m \} \quad \text{where} \quad i_j = \text{Pattern}_jI={i1,i2,,im}whereij=Patternj

Example Scenario: Human-AI Collaborative Medical Diagnosis

Context:A human medical practitioner (Dr. Smith) collaborates with an AI diagnostic system (AI-Diagnosis) to diagnose a patient’s condition.

Data Collection:

DH={Age: 45,Symptoms: Cough, Fever, Shortness of Breath,Medical History: None}\mathbf{D}_H = \{\text{Age: 45}, \text{Symptoms: Cough, Fever, Shortness of Breath}, \text{Medical History: None}\}DH={Age: 45,Symptoms: Cough, Fever, Shortness of Breath,Medical History: None}DA={Extensive medical datasets,Research articles on respiratory diseases}\mathbf{D}_A = \{\text{Extensive medical datasets}, \text{Research articles on respiratory diseases}\}DA={Extensive medical datasets,Research articles on respiratory diseases}

Pattern Identification:AI-Diagnosis processes the Data to identify patterns associated with respiratory conditions.

Information Generation:

IA={Pattern: High likelihood of pneumonia based on symptoms and data trends}\mathbf{I}_A = \{\text{Pattern: High likelihood of pneumonia based on symptoms and data trends}\}IA={Pattern: High likelihood of pneumonia based on symptoms and data trends}IH={Pattern: Moderate likelihood of bronchitis based on patient-specific factors}\mathbf{I}_H = \{\text{Pattern: Moderate likelihood of bronchitis based on patient-specific factors}\}IH={Pattern: Moderate likelihood of bronchitis based on patient-specific factors}

3.2 Conversion from Information to Knowledge

Objective:Integrate and contextualize Information to form comprehensive Knowledge that supports informed decision-making.

Mathematical Framework:

  1. Information Integration:Combine Information from multiple sources to build a cohesive understanding.

    Icombined=IA∪IB\mathbf{I}_{\text{combined}} = \mathbf{I}_A \cup \mathbf{I}_BIcombined=IAIB

  2. Contextualization:Embed Information within relevant contexts, considering factors such as historical data, environmental variables, and domain-specific knowledge.

    K=Contextualize(Icombined,Context)\mathbf{K} = \text{Contextualize}(\mathbf{I}_{\text{combined}}, \text{Context})K=Contextualize(Icombined,Context)

  3. Knowledge Structuring:Organize contextualized Information into structured Knowledge frameworks, such as ontologies or knowledge graphs.

    K={k1,k2,…,kp}wherekl=StructuredKnowledgel\mathbf{K} = \{ k_1, k_2, \dots, k_p \} \quad \text{where} \quad k_l = \text{StructuredKnowledge}_lK={k1,k2,,kp}wherekl=StructuredKnowledgel

Example Scenario: Human-AI Collaborative Medical Diagnosis

Information Integration:

Icombined={High likelihood of pneumonia,Moderate likelihood of bronchitis}\mathbf{I}_{\text{combined}} = \{\text{High likelihood of pneumonia}, \text{Moderate likelihood of bronchitis}\}Icombined={High likelihood of pneumonia,Moderate likelihood of bronchitis}

Contextualization:Considering the patient’s lack of prior respiratory issues and the severity of symptoms.

Knowledge Structuring:

K={Comprehensive Diagnosis: Pneumonia is the more probable condition due to symptom severity and data trends}\mathbf{K} = \{\text{Comprehensive Diagnosis: Pneumonia is the more probable condition due to symptom severity and data trends}\}K={Comprehensive Diagnosis: Pneumonia is the more probable condition due to symptom severity and data trends}

4. Mathematical Models for Conversion Processes

To formalize the conversion processes, we employ mathematical models that quantify the transformation from Data to Information and from Information to Knowledge.

4.1 Data to Information Conversion Model

Assumptions:

  • Data instances are represented as vectors in a high-dimensional semantic space.

  • Patterns are detectable through clustering or classification algorithms.

Model:

  1. Data Representation:

    D={d1,d2,…,dn}di∈Rm\mathbf{D} = \{ \mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n \} \quad \mathbf{d}_i \in \mathbb{R}^mD={d1,d2,,dn}diRm

  2. Pattern Detection Function:

    Patterns=fpattern(D)\text{Patterns} = f_{\text{pattern}}(\mathbf{D})Patterns=fpattern(D)

    Where fpatternf_{\text{pattern}}fpattern could be a clustering algorithm like K-Means or a classification algorithm like Decision Trees.

  3. Information Formation:

    I={i1,i2,…,ik}ij=Patternj\mathbf{I} = \{ \mathbf{i}_1, \mathbf{i}_2, \dots, \mathbf{i}_k \} \quad \mathbf{i}_j = \text{Pattern}_jI={i1,i2,,ik}ij=Patternj

4.2 Information to Knowledge Conversion Model

Assumptions:

  • Information needs to be contextualized and integrated with existing Knowledge bases.

  • Knowledge is represented in structured forms such as ontologies.

Model:

  1. Information Integration:

    Icombined=I1∪I2∪⋯∪In\mathbf{I}_{\text{combined}} = \mathbf{I}_1 \cup \mathbf{I}_2 \cup \dots \cup \mathbf{I}_nIcombined=I1I2In

  2. Contextualization Function:

    K=fcontext(Icombined,Context)\mathbf{K} = f_{\text{context}}(\mathbf{I}_{\text{combined}}, \text{Context})K=fcontext(Icombined,Context)

    Where fcontextf_{\text{context}}fcontext incorporates domain-specific rules and contextual data.

  3. Knowledge Structuring Function:

    K=fstructure(K)\mathbf{K} = f_{\text{structure}}(\mathbf{K})K=fstructure(K)

    Where fstructuref_{\text{structure}}fstructure organizes the information into a structured Knowledge framework.

5. Detailed Conversion Examples in DIKWP*DIKWP Interaction Space

To illustrate the conversion processes, we present detailed examples across different DIKWP components within the interaction space.

5.1 Example 1: Human-AI Collaborative Medical Diagnosis

Context:A human medical practitioner (Dr. Smith) collaborates with an AI diagnostic system (AI-Diagnosis) to diagnose a patient’s condition.

5.1.1 Conversion from Data to Information
  1. Data Collection:

    DH={Age: 45,Symptoms: Cough, Fever, Shortness of Breath,Medical History: None}\mathbf{D}_H = \{\text{Age: 45}, \text{Symptoms: Cough, Fever, Shortness of Breath}, \text{Medical History: None}\}DH={Age: 45,Symptoms: Cough, Fever, Shortness of Breath,Medical History: None}DA={Extensive medical datasets,Research articles on respiratory diseases}\mathbf{D}_A = \{\text{Extensive medical datasets}, \text{Research articles on respiratory diseases}\}DA={Extensive medical datasets,Research articles on respiratory diseases}

  2. Pattern Identification:

    • AI-Diagnosis processes DA\mathbf{D}_ADA to identify common patterns associated with respiratory conditions.

    • Detects that persistent cough, fever, and shortness of breath are indicative of pneumonia in the absence of prior respiratory issues.

  3. Information Generation:

    IA={High likelihood of pneumonia based on symptom severity and data trends}\mathbf{I}_A = \{\text{High likelihood of pneumonia based on symptom severity and data trends}\}IA={High likelihood of pneumonia based on symptom severity and data trends}IH={Moderate likelihood of bronchitis based on patient-specific factors}\mathbf{I}_H = \{\text{Moderate likelihood of bronchitis based on patient-specific factors}\}IH={Moderate likelihood of bronchitis based on patient-specific factors}

5.1.2 Conversion from Information to Knowledge
  1. Information Integration:

    Icombined={High likelihood of pneumonia,Moderate likelihood of bronchitis}\mathbf{I}_{\text{combined}} = \{\text{High likelihood of pneumonia}, \text{Moderate likelihood of bronchitis}\}Icombined={High likelihood of pneumonia,Moderate likelihood of bronchitis}

  2. Contextualization:

    • Considering patient’s lack of prior respiratory issues and the severity of current symptoms.

  3. Knowledge Structuring:

    K={Comprehensive Diagnosis: Pneumonia is more probable due to symptom severity and lack of prior issues}\mathbf{K} = \{\text{Comprehensive Diagnosis: Pneumonia is more probable due to symptom severity and lack of prior issues}\}K={Comprehensive Diagnosis: Pneumonia is more probable due to symptom severity and lack of prior issues}

Impact:The conversion process transforms raw Data into actionable Knowledge, enabling Dr. Smith and AI-Diagnosis to converge on a more accurate diagnosis, enhancing patient care.

5.2 Example 2: Human-AI Financial Forecasting

Context:A financial analyst (Ms. Johnson) collaborates with an AI forecasting system (AI-Forecast) to predict stock market trends.

5.2.1 Conversion from Data to Information
  1. Data Collection:

    DH={Current stock prices,Historical market data}\mathbf{D}_H = \{\text{Current stock prices}, \text{Historical market data}\}DH={Current stock prices,Historical market data}DA={Extensive financial datasets,Economic indicators}\mathbf{D}_A = \{\text{Extensive financial datasets}, \text{Economic indicators}\}DA={Extensive financial datasets,Economic indicators}

  2. Pattern Identification:

    • AI-Forecast analyzes DA\mathbf{D}_ADA to identify trends such as rising interest rates and geopolitical tensions affecting stock prices.

  3. Information Generation:

    IA={Bearish trend due to rising interest rates and geopolitical tensions}\mathbf{I}_A = \{\text{Bearish trend due to rising interest rates and geopolitical tensions}\}IA={Bearish trend due to rising interest rates and geopolitical tensions}IH={Bullish trend based on increasing GDP and low unemployment}\mathbf{I}_H = \{\text{Bullish trend based on increasing GDP and low unemployment}\}IH={Bullish trend based on increasing GDP and low unemployment}

5.2.2 Conversion from Information to Knowledge
  1. Information Integration:

    Icombined={Bearish trend,Bullish trend}\mathbf{I}_{\text{combined}} = \{\text{Bearish trend}, \text{Bullish trend}\}Icombined={Bearish trend,Bullish trend}

  2. Contextualization:

    • Assessing the relative impact of rising interest rates versus economic growth indicators.

  3. Knowledge Structuring:

    K={Balanced outlook: Market may experience volatility with potential for both bullish and bearish movements}\mathbf{K} = \{\text{Balanced outlook: Market may experience volatility with potential for both bullish and bearish movements}\}K={Balanced outlook: Market may experience volatility with potential for both bullish and bearish movements}

Impact:The conversion from conflicting Information to a balanced Knowledge framework allows Ms. Johnson and AI-Forecast to navigate market uncertainties more effectively, leading to informed investment strategies.

5.3 Example 3: Human-AI Educational Tutoring

Context:A student (Alex) interacts with an AI tutoring system (AI-Tutor) to learn calculus.

5.3.1 Conversion from Data to Information
  1. Data Collection:

    DX={Student’s grades,Learning pace,Engagement metrics}\mathbf{D}_X = \{\text{Student's grades}, \text{Learning pace}, \text{Engagement metrics}\}DX={Student’s grades,Learning pace,Engagement metrics}DA={Extensive calculus problems,Instructional content}\mathbf{D}_A = \{\text{Extensive calculus problems}, \text{Instructional content}\}DA={Extensive calculus problems,Instructional content}

  2. Pattern Identification:

    • AI-Tutor analyzes Alex’s learning data to identify strengths and weaknesses in calculus topics.

  3. Information Generation:

    IA={Strong understanding of derivatives, weak in integrals}\mathbf{I}_A = \{\text{Strong understanding of derivatives, weak in integrals}\}IA={Strong understanding of derivatives, weak in integrals}IX={Prefers visual learning aids, struggles with abstract concepts}\mathbf{I}_X = \{\text{Prefers visual learning aids, struggles with abstract concepts}\}IX={Prefers visual learning aids, struggles with abstract concepts}

5.3.2 Conversion from Information to Knowledge
  1. Information Integration:

    Icombined={Strong in derivatives,Weak in integrals,Prefers visual aids,Struggles with abstract concepts}\mathbf{I}_{\text{combined}} = \{\text{Strong in derivatives}, \text{Weak in integrals}, \text{Prefers visual aids}, \text{Struggles with abstract concepts}\}Icombined={Strong in derivatives,Weak in integrals,Prefers visual aids,Struggles with abstract concepts}

  2. Contextualization:

    • Considering Alex’s preference for visual aids to address struggles with abstract integral concepts.

  3. Knowledge Structuring:

    K={Personalized learning path: Incorporate visual tools and step-by-step integral problem-solving techniques}\mathbf{K} = \{\text{Personalized learning path: Incorporate visual tools and step-by-step integral problem-solving techniques}\}K={Personalized learning path: Incorporate visual tools and step-by-step integral problem-solving techniques}

Impact:Through the conversion process, AI-Tutor provides Alex with tailored educational strategies, enhancing learning efficiency and academic performance in calculus.

6. Mathematical Optimization for Conversion Processes

To systematically enhance the conversion of Data to Information and Information to Knowledge, we employ mathematical optimization techniques that minimize deficiencies and maximize the effectiveness of the conversion.

6.1 Objective Function

The primary objective is to maximize the quality of Knowledge (K\mathcal{K}K) while minimizing the deficiencies in Data and Information (D\mathcal{D}D and I\mathcal{I}I).

max⁡K−λ⋅(D+I)\max \quad \mathcal{K} - \lambda \cdot (\mathcal{D} + \mathcal{I})maxKλ(D+I)

Where:

  • K\mathcal{K}K: Quality measure of Knowledge.

  • D\mathcal{D}D: Deficiency measure in Data.

  • I\mathcal{I}I: Deficiency measure in Information.

  • λ\lambdaλ: Weighting factor balancing the importance of deficiency minimization against Knowledge quality maximization.

6.2 Constraints

To ensure feasible and practical conversion processes, the following constraints are imposed:

  1. Completeness Constraint:

    CX≥θC∀X∈{D,I,K}C_X \geq \theta_C \quad \forall X \in \{D, I, K\}CXθCX{D,I,K}

    Where θC\theta_CθC is the minimum acceptable completeness score.

  2. Consistency Constraint:

    SX≥θS∀X∈{D,I,K}S_X \geq \theta_S \quad \forall X \in \{D, I, K\}SXθSX{D,I,K}

    Where θS\theta_SθS is the minimum acceptable consistency score.

  3. Precision Constraint:

    PX≥θP∀X∈{D,I,K}P_X \geq \theta_P \quad \forall X \in \{D, I, K\}PXθPX{D,I,K}

    Where θP\theta_PθP is the minimum acceptable precision score.

6.3 Penalty Function

Incorporate penalties for exceeding deficiency thresholds to enforce constraints.

Penalty=η⋅∑X∈{D,I,K}max⁡(0,(DX+IX)−θX)\text{Penalty} = \eta \cdot \sum_{X \in \{D, I, K\}} \max(0, (\mathcal{D}_X + \mathcal{I}_X) - \theta_X)Penalty=ηX{D,I,K}max(0,(DX+IX)θX)

Where:

  • η\etaη: Penalty coefficient.

  • θX\theta_XθX: Deficiency threshold for component XXX.

6.4 Combined Optimization Objective

Integrate the penalty into the objective function to formulate the combined optimization problem.

max⁡(K−λ⋅(D+I)−Penalty)\max \left( \mathcal{K} - \lambda \cdot (\mathcal{D} + \mathcal{I}) - \text{Penalty} \right)max(Kλ(D+I)Penalty)

This formulation ensures that the conversion processes prioritize the enhancement of Knowledge quality while adhering to predefined deficiency constraints.

7. Practical Implementation Steps7.1 Step 1: Data Collection and Profiling
  • Action: Gather DIKWP profiles from both stakeholders.

  • Tools: Data aggregation systems, profiling algorithms.

7.2 Step 2: Identification of 3-No Problems
  • Action: Detect Incompleteness, Inconsistency, and Imprecision using predefined metrics.

  • Tools: Gap analysis tools, similarity measures, entropy calculators.

7.3 Step 3: Quantification and Assessment
  • Action: Calculate completeness scores (CXC_XCX), consistency scores (SXS_XSX), and precision scores (PXP_XPX).

  • Tools: Mathematical computation frameworks (e.g., Python, MATLAB).

7.4 Step 4: Remediation Strategy Formulation
  • Action: Develop targeted strategies based on identified and quantified problems.

  • Tools: Decision support systems, optimization solvers.

7.5 Step 5: Implementation and Monitoring
  • Action: Apply remediation strategies and continuously monitor their effectiveness.

  • Tools: Feedback loops, iterative optimization processes.

8. Conclusion

The conversion of the semantics of Data, Information, and Knowledge within the DIKWP*DIKWP interaction space is a structured and systematic process essential for enhancing mutual understanding and collaboration between stakeholders. By employing mathematical frameworks and targeted remediation strategies, stakeholders can effectively transform raw Data into meaningful Information and comprehensive Knowledge, thereby mitigating communication deficiencies such as the 3-No ProblemsIncomplete Input/Output, Inconsistent Input/Output, and Imprecise Input/Output.

This comprehensive approach not only strengthens the theoretical underpinnings of the DIKWP model but also provides practical methodologies for optimizing human-AI interactions across various domains, including medical diagnosis, financial forecasting, and educational tutoring.

Future Directions:

  • Advanced Machine Learning Techniques: Integrate more sophisticated algorithms for pattern recognition and knowledge structuring.

  • Real-Time Conversion Systems: Develop systems capable of real-time detection and remediation of the 3-No Problems.

  • Empirical Validation: Conduct extensive studies to validate the effectiveness of the conversion frameworks in diverse real-world scenarios.

References
  1. Duan, Y. (2024). International Test and Evaluation Standards for Artificial Intelligence based on Networked Data-Information-Knowledge-Wisdom-Purpose (DIKWP) Model.

  2. Vaswani, A., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 5998–6008.

  3. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

  4. Bengio, Y., LeCun, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

  5. Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.

  6. Marcus, G., & Davis, E. (2020). GPT-3, Bloviator: OpenAI's language generator has no idea what it's talking about. MIT Technology Review.

  7. Maynez, J., Narayan, S., Bohnet, B., & McDonald, R. (2020). On faithfulness and factuality in abstractive summarization. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 1906–1919.

  8. Kant, I. (1781). Critique of Pure Reason.

  9. Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synesthesia. Cognitive Neuroscience, 5(2), 97–118.

Acknowledgments

The author extends gratitude to Prof. Yucong Duan for his pioneering work on the DIKWP model and the Theory of Relativity of Consciousness, which have significantly influenced the conceptual framework of this analysis. Appreciation is also given to colleagues in cognitive science and artificial intelligence for their invaluable feedback and insights.

Author Information

Correspondence and requests for materials should be addressed to [Author's Name and Contact Information].

Keywords: DIKWP Model, Data-Information-Knowledge Conversion, Semantic Transformation, Human-AI Interaction, Cognitive Processing, 3-No Problems, Mathematical Framework, Knowledge Integration, Communication Deficiencies, Understanding Enhancement



https://blog.sciencenet.cn/blog-3429562-1453184.html

上一篇:Old: Conversion of the 3-No Problem within DIKWP*DIKWP(初学者版)
下一篇:Old: Completeness of Semantic Coverage in the DIKWP(初学者版)
收藏 IP: 140.240.40.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-9-29 14:18

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部