|
Nano-Micro Letters (2021)13: 200 https://doi.org/10.1007/s40820-021-00701-8 2. 器件制作过程不涉及任何有害物质,水既是唯一的溶剂,也是自愈合过程的触发剂,保证了电子皮肤的生物兼容性。 3. 电子皮肤可与传统的电子产品相结合,将采集到的人体生命体征信号通过蓝牙装置传输到智能手机上进行后处理,实现温度、湿度以及应力信号的实时监测。 图1. (a) CNF/PVA薄膜破损(左)及自修复后(右)照片;(b) CNF/PVA薄膜自修复部位的上表面(左)及截面(右)SEM表征;(c) CNF/PVA薄膜的水分激发自愈合机理示意图。 对于自修复电子皮肤而言,电极除了需要具有良好的导电性外,其自修复能力直接决定了电子皮肤的长期稳定性能。选用具有不同维度与尺寸的导电炭黑(CB)和石墨(G)混合作为导电填料,增加其界面之间的作用面积以提高电极的导电性能。CNF/PVA复合材料作为粘结剂与CB/G导电材料混合,同时赋予复合材料自修复功能。CB/G-CNF/PVA复合浆料可利用丝网印刷工艺在CNF/PVA自修复衬底上图案化。自修复后的电极仍具有良好的导电性,且电极层对应力不敏感(图2b-c)。此外,为研究电极层的自修复性能对器件自修复能力的影响,将自修复电极材料CB/G-CNF/PVA与不具有自修复能力的CB/G-PVA和商用银浆电极材料分别印刷在CNF/PVA自修复衬底上进行对比,研究修复后的电极导电性受应变的影响(图2d-e)。CB/G-CNF/PVA电极在不同弯折状态下均能维持良好的导电性,而不具有自修复功能的电极在向外弯折时损伤部位再次发生断裂,导致电极器件失效。SEM表征结果也证明了电极自愈部分的不同修复程度。 图2. (a) 应变计算模型示意图; (b,c) 原始电极和自愈合后电极的电阻值随应力变化情况;(d) 可视化控制:将自修复后的CB/G-CNF/PVA电极、CB/G-PVA电极和商用银电极与LED灯连接,三种电极在不同弯曲状态下控制LED灯明暗;(e) 自修复后的CB/G-CNF/PVA电极、CB/G-PVA电极和商用银电极在修复位置的截面(上)与上表面(下)的SEM表征。 将石墨(G)与CNF/PVA复合作为应力敏感材料,通过丝网印刷工艺将敏感材料在CNF/PVA薄膜表面图案化制成应力传感器。利用敏感材料中的G在应变下发生滑移导致接触电阻变化可实现对不同应力的检测,应力传感器具有快速的响应恢复速度及良好的稳定性和自修复能力(图3)。应力传感器自修复前后的传感性能如图4所示,修复后的传感器在不同应力下的响应值与原始器件几乎一致。 图5. 应力传感器在人体生命体征信号及运动信号监测应用:(a) 吞咽及咳嗽信号监测;(b) 语音识别;(c) 握拳动作时手臂肌肉收缩情况监测;(d) 桡动脉信号监测;(e) 点头动作时颈部运动信号监测;在(f) 手肘弯曲信号监测;(g) 手指弯曲信号监测。 IV 温、湿度传感器及多功能电子皮肤应用 为了实现对多种外部刺激信号的实时监测,应力、温度和湿度传感器被集成到同一自修复衬底上制作成多功能电子皮肤。电子皮肤可与信号采集和蓝牙传输设备连接,将电子皮肤贴合在人体各部位可实现人体运动与环境温、湿度的实时无线监测(图6)。通过合理的材料选择和传感单元结构设计,可有效的降低各测试信号间的串扰。 图6. (a,b) 多功能电子皮肤照片(包含应力传感器、温度传感器及湿度传感器);(c) 电子皮肤的无线监控系统示意图; 通过手机端实时显示(d,e) 应力传感器监测手臂弯曲状态及皮肤表面形变时的电阻变化(f) 温度传感器靠近或远离热源时电阻变化;(g) 湿度传感器监测环境湿度变化(向湿度传感器呼气)时其阻值变化。 林修竹 本文第一作者 吉林大学 博士研究生 面向人体生命体征信号监测的柔性压力传感器的研究。 赵红然 本文通讯作者 吉林大学 副教授 聚合物水凝胶气体、湿度传感器及可穿戴柔性压力传感器。 ▍主要研究成果 ▍Email: zhaohr@jlu.edu.cn 张彤 本文通讯作者 吉林大学 教授 面向工业生产安全、环境污染、人体健康以及家居环境等领域的气体、湿度、生物分子的传感检测,开展微纳米传感材料的设计和制备、传感器的结构设计以及应用开发。 ▍主要研究成果 ▍Email: zhangtong@jlu.edu.cn Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、Springer Nature合作开放获取(open-access)出版的英文学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, commentary, perspective, letter, highlight, news, etc),包括微纳米材料的合成表征与性能及其在能源、催化、环境、传感、吸波、生物医学等领域的应用研究。已被SCI、EI、SCOPUS、PubMed Central、DOAJ、CSCD、知网、万方、维普、超星等数据库收录。2020 JCR影响因子IF=16.419,在物理、材料、纳米三个领域均居Q1区(前10%)。2020 CiteScore=15.9,材料学科领域排名第4 (4/123)。中科院期刊分区:材料科学1区TOP期刊。全文免费下载阅读(http://springer.com/40820),欢迎关注和投稿。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 00:25
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社