ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]亮点文章 | 铁磁性Kagome金属Fe3Sn2中的巨拓扑霍尔效应

已有 2033 次阅读 2020-5-18 16:42 |系统分类:论文交流|文章来源:转载

6-1.jpg亮点文章

铁磁性Kagome金属Fe3Sn2中的巨拓扑霍尔效应

第一作者 | 王琦

通讯作者 | 雷和畅


研究亮点

本文研究发现Fe3Sn2表现出巨拓扑霍尔效应,而这一效应可能是由于场诱导的斯格明子态和非线性自旋结构共同导致的。


研究背景

在非共面自旋构型中,来源于实空间标量自旋手性χijk = Si·(Sj × Sk)的贝利相位可以产生一个虚拟磁场,从而产生拓扑霍尔效应(topological Hall effect,THE)。拓扑霍尔效应通常可在具有磁性斯格明子的金属磁体中观察到。最近,在阻挫磁体中也观察到了拓扑霍尔效应。同时,实验和理论研究表明磁性斯格明子也可以在一个中心对称晶格中通过磁阻挫稳定存在。阻挫Kagome晶格铁磁体Fe3Sn2近年来引起了人们的广泛关注。在居里温度TC(641 K)以下,单晶Fe3Sn2表现出巨大的反常霍尔效应。此外,角分辨光电子谱研究证实了massive Dirac费米子和平带的存在。而洛伦兹透射电子显微镜的研究观察到了在100 K以上的宽温度范围内存在斯格明子的磁泡结构。另外还发现,Fe磁矩从c轴偏转到ab平面内的过程中存在非共线磁性结构。这些研究结果激发我们对Fe3Sn2中的拓扑霍尔效应开展详细研究。


研究方法及结果

本工作发现,Fe3Sn2在低场区表现出巨大的拓扑霍尔效应,在温度300 K和磁场0.76 T时,最大拓扑霍尔电阻率约为2.01 μΩ·cm。当磁场大于1.3 T时,当Fe磁矩完全极化,此时拓扑霍尔效应消失。详细分析表明,这可能与场诱导的斯格明子态和非线性自旋构型有关。


研究意义或前景

本工作不仅加深了我们对阻挫磁性体系和拓扑霍尔效应的理解,而且为探索新型具有奇异物理性质的磁性阻挫材料提供了新思路。


文章来源

Chin. Phys. B, 2020, 29 (1): 017101

原文概览

Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2


Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅)


Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China


Keywords: topological Hall effect, skyrmion state, non-collinear spin configuration


We present the experiment observation of a giant topological Hall effect (THE) in a frustrated kagome bilayer magnet Fe3Sn2. The negative topologically Hall resistivity appears when the field is below 1.3 T and it increases with increasing temperature up to 300 K. Its maximum absolute value reaches ~2.01 μΩ·cm at 300 K and 0.76 T. The origins of the observed giant THE can be attributed to the coexistence of the field-induced skyrmion state and the non-collinear spin configuration, possibly related to the magnetic frustration interaction in Fe3Sn2.

6-2.png6-3.jpg6-4.jpg6-5.png


CPB专题推荐

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

TOPICAL REVIEW — New generation solar cells

TOPICAL REVIEW — Recent advances in thermoelectric materials and devices

SPECIAL TOPIC — Amorphous physics and materials

TOPICAL REVIEW — Soft matter and biological physics

SPECIAL TOPIC — Nanophotonics

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

SPECIAL TOPIC — Topological semimetals

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Nanolasers 

TOPICAL REVIEW — Physics research in materials genome

TOPICAL REVIEW — Fundamental research under high magnetic fields

SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)  

TOPICAL REVIEW — Spin manipulation in solids

TOPICAL REVIEW — Nanophotonics

TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science

TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences

SPECIAL TOPIC — Recent advances in thermoelectric materials and devices

TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials

TOPICAL REVIEW — Solid-state quantum information processing

SPECIAL TOPIC — New generation solar cells

SPECIAL TOPIC — Soft matter and biological physics

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism

TOPICAL REVIEW — ZnO-related materials and devices

TOPICAL REVIEW — Topological electronic states

TOPICAL REVIEW — 2D materials: physics and device applications

TOPICAL REVIEW — Amorphous physics and materials

TOPICAL REVIEW — High pressure physics

TOPICAL REVIEW — Low-dimensional complex oxide structures

TOPICAL REVIEW — Fundamental physics research in lithium batteries

TOPICAL REVIEW — Interface-induced high temperature superconductivity

6-6.png



https://blog.sciencenet.cn/blog-3377544-1233751.html

上一篇:[转载]亮点文章 | 基于MP2+ΔCCSD(T)方法检验DFT范德华力方法PBE+D3和SCAN+rVV10的准确性
下一篇:[转载]CPB2020年第2期编辑推荐文章
收藏 IP: 159.226.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-26 09:45

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部