||
「太长不看版」在R中运行下面命令即可安装成功PAPIT软件。
# 安装GAPIT软件做GWAS分析
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
source("http://zzlab.net/GAPIT/GAPIT.library.R")
source("http://zzlab.net/GAPIT/gapit_functions.txt")
张志武老师实验室的网页:http://www.zzlab.net/GAPIT/
GAPIT说明文档:http://www.zzlab.net/GAPIT/gapit_help_document.pdf
「错误的做法」
install.packages("GAPIT")
「报错:」
> install.packages("GAPIT")
Installing package into ‘C:/Users/dave/Documents/R/win-library/4.0’
(as ‘lib’ is unspecified)
Warning in install.packages :
package ‘GAPIT’ is not available for this version of R
A version of this package for your version of R might be available elsewhere,
see the ideas at
https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
因为GAPIT
不在CRAN上面,所以上面命令是错误的。
「正确的做法」
参考说明文档里的用法,在R中,运行下面命令:
source("http://zzlab.net/GAPIT/GAPIT.library.R")
source("http://zzlab.net/GAPIT/gapit_functions.txt")
就可以安装了。
「注意,这两条命令会下载安装一些包,默认安装就行。下面将解决一些常见的报错。」
「我的版本:」
载入需要的程辑包:scatterplot3d
错误: With R version 3.5 or greater, install Bioconductor packages using BiocManager; see https://bioconductor.org/install
此外: Warning messages:
1: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
不存在叫‘LDheatmap’这个名字的程辑包
2: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
错误: With R version 3.5 or greater, install Bioconductor packages using BiocManager; see https://bioconductor.org/install
「解决方法:安装BioManager软件」
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
然后再运行命令即可成功:
source("http://zzlab.net/GAPIT/GAPIT.library.R")
source("http://zzlab.net/GAPIT/gapit_functions.txt")
「解决方法:」
install.packages("nloptr")
install.packages("LDheatmap")
「解决方案:」
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("snpStats")
「运行成功,没有报错,说明安装成功!」
> source("http://zzlab.net/GAPIT/GAPIT.library.R")
载入需要的程辑包:ape
载入需要的程辑包:compiler
载入需要的程辑包:EMMREML
载入需要的程辑包:Matrix
载入需要的程辑包:scatterplot3d
> source("http://zzlab.net/GAPIT/gapit_functions.txt")
# test GAPIT
#Import data from Zhiwu Zhang Lab
myY <- read.table("http://zzlab.net/GAPIT/data/mdp_traits.txt", head = TRUE)
myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T)
myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T)
source("http://zzlab.net/GAPIT/GAPIT.library.R")
source("http://zzlab.net/GAPIT/gapit_functions.txt")
#GWAS with five methods
myGAPIT_MLM <- GAPIT(
Y=myY[,c(1,3)], #fist column is individual ID, the third columns is days to pollination
GD=myGD,
GM=myGM,
PCA.total=3,
model=c("GLM", "MLM", "CMLM", "FarmCPU", "Blink"),
Multiple_analysis=TRUE)
经过一段时间的运行,结束后,我们可以在工作目录中查看运行的GWAS分析结果。
「结果文件:」
「结果预览:」
这个软件很强大,很友好,很值得学习使用!
感觉有用,关注我吧!
「公众号:育种数据分析之放飞自我」
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-28 01:32
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社