||
改进生物传感器:科学家使用特殊材料解决了重大的酶挑战
诸平
This figure illustrates the electrochemical wiring of a redox enzyme via a redox-active MOF, enabling efficient electron transfer. The MOF facilitates enzyme immobilization while maintaining catalytic activity for bioelectrocatalytic applications. Credit: University Of Tsukuba
据日本筑波大学(University Of Tsukuba)2025年2月2日提供的消息,改进生物传感器:科学家使用特殊材料解决了重大的酶挑战(Improving Biosensors: Scientists Solve Significant Enzyme Challenge Using Special Material)。相关研究结果于2025年1月10日已经在《材料视野》(Materials Horizons)杂志发表(其实在线发表日期是2024年12月19日)——Muhammad Rezki, Md Motaher Hossain, Thomas Kouyou Savage, Yoshihide Tokunou, Seiya Tsujimura(辻村清也). Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes. Materials Horizons, 2025 January 10. DOI: 10.1039/D4MH01538J. Epub 19 December 2024.
参与此项研究的除了来自日本筑波大学(Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan; Degree Programs in Life and Earth Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan; Department of Life and Environmental Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan; Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan)的研究人员之外,还有来自日本国家材料科学研究所高分子与生物材料研究中心(Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki, Ibaraki, Japan)的研究人员。
科学家们通过修饰金属有机框架(metal-organic frameworks简称MOFs)来改进基于酶的生物传感器,以增强电子转移和酶的稳定性。(Scientists improved enzyme-based biosensors by modifying MOFs to enhance electron transfer and enzyme stability.)
酶对于促进人体和自然界的化学反应都是必不可少的。然而,在酶和电极之间实现有效的电子转移仍然是开发基于酶的电子设备(如传感器)的主要挑战,特别是使用传统技术。
最近,一个研究小组使用金属有机框架(MOFs)特殊材料解决了这个问题,这种材料由金属离子和有机连接剂组成,形成多孔晶体结构。MOFs广泛应用于气体吸附和分离等应用,其独特的性质现在已被用来增强酶-电极的相互作用。
一般来说,MOFs具有固有的氧化还原活性,并且表现出较差的导电性;因此,研究人员使用促进电子传导和实现特定氧化还原反应的材料(这种材料被称为氧化还原介质)来修饰MOF结构。这种修饰过的材料就像导线一样,允许酶和电极之间进行有效的电子交换。
提高酶的接近性和稳定性(Enhancing Enzyme Accessibility and Stability)
此外,MOFs 的设计可以很容易地进入酶的活性位点。另一个重要的方面是设计一个合适的纳米级结构,并实施有效的固定策略,以保持酶在电极表面。这种方法有助于防止酶浸出,因为酶浸出可能导致不准确的测量。
这种创新的策略使基于酶的生物传感器能够高效和稳定的长期测量。这一成果在疾病诊断、环境监测和可持续能源技术等各个领域具有潜在的应用前景。研究小组相信他们的研究不仅有助于科学进步,而且还能改善人们的生活。
上述介绍仅供参考,欲了解更多信息敬请注意浏览原文和相关报道。
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation. Here, we design a novel redox-active cobalt-based metal-organic framework (raMOF) obtained via the partial ligand substitution of 2-methylimidazole (MeIm) with a 1,2-naphthoquinone-4-sulfonate (NQSO) redox probe, as a promising platform for high-performance enzyme electrodes. This nanostructured raMOF, combined with multi-walled carbon nanotubes (CNTs), provided a high current density of up to 2.06 mA cm-2 during enzymatic reactions and maintained remarkable operational stability, retaining 100% of its current over 54 hours. This stability far exceeded that of adsorbed NQSO on CNTs, which experienced a complete loss of the initial current, highlighting the significant advantage of the raMOF-based platform for high-performance enzyme electrodes.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-3-15 17:09
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社