|||
tensorboardX支持scalar
,image
,figure
,histogram
,audio
,text
,graph
,onnx_graph
,embedding
,pr_curve
和video
等。
(一)安装
依赖环境:
Python
Pytorch
tensorboardX: pip install tensorboardX
tensorflow: pip install tensorflow (tensorboardX的运行需要tensorflow)
(二)代码
from tensorboardX import SummaryWriter
def train_process():
writer = SummaryWriter()
for epoch in range(epoch_num):
self.model.train(True)
for data in self.datasets['train']:
inputs, labels = data
with torch.cuda.device(self.cuda_inds[0]):
inputs = Variable(inputs.cuda()).to(self.cuda_inds[0]))
labels = Variable(labels.cuda()).to(self.cuda_inds[0]))
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
loss.backward()
preds = torch.argmax(outputs.data)
running_loss += loss.item()
running_acc += np.sum( preds == labels.data)
data_len = len(self.dcm_datasets['train'])
epoch_loss = running_loss/data_len
epoch_acc = running_acc/data_len
writer.add_scalars('evl', {'train_loss': epoch_lass, 'train_acc': epoch_acc}, epoch)
# 试用了writer.add_scalar('evl/train_loss', running_loss, epoch)
# writer.add_scalar('evl/train_acc', running_acc, epoch)
# 没有成功
writer.close()
(三)显示
代码成功运行结束后,发现runs文件夹里有‘evl/train_loss’ 'evl/train_acc'两个文件夹。
首先,打开命令行,进入项目路径(e.g., /home/gaoll/Codes/build_model,此路径下有runs文件夹。
其次,输入命令 tensorboard --logdir runs。
随后,命令行出现一个链接(e.g., http://DESKTOP-KP1TJ04:6006/),在浏览器打开此链接,便可看到生成的图
(四)'tensorboard' 不是内部或外部命令,也不是可运行的程序 或批处理文件”解决方法
1.确认已经安装好tensorflow,命令中输入python,然后输入import tensorflow as tf,能正常import就表示安装成功
2.tensorboard的exe文件在安装完成后,已经放置在python的安装文件夹下的script文件夹中,例如我在C盘的Python35中安装的python,那么在C:\Python35\Scripts路径下可以找到tensorboard.exe,以及pip.exe等文件,因此,将这个路径加入系统的path中,即可解决上述问题
References:
https://www.jianshu.com/p/46eb3004beca
https://blog.csdn.net/zhylhy520/article/details/80760816
https://www.jianshu.com/p/bf288ae398ea
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 20:06
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社