|
1941年,海因里希在《工业事故预防》(Industrial Accident Prevention)一书中阐述了他的事故致因链的思想,提出了著名的多米诺骨牌模型,同时通过大量的事故统计和分类,提出了事故三角形理论,后被称为海因里希法则。即:
当一个企业有300起隐患或违章,非常有可能发生29起轻伤或故障,另外还有一起重伤、伤亡事件。
海因里希在调查了55万件机械事故,其中死亡、重伤事故1666件,情商48334件,其余为无伤害事故。从而得出一个重要结论,即在机械事故中,死亡、重伤、轻伤和无伤害事故的比例为1:29:300.国际上把这一法则成为事故法则或海因里希法则。海因里希后来将这样的事故事件统称为事件,因此上面的海因里希三角形的描述中用了事件。。
因此在实际的统计中,这个比例的具体数值可能有所变化,但是比例大致维持不变。上述的统计结果只是一个比例关系,并不是说一起重伤事件发生之前一定要有300次无伤亡事件或29次轻伤事件的发生。海因里希法则揭示了事故的严重程度和事故发生的次数或者频率之间的关系,其含义是,如果轻微事故(如尚未造成任何损失的违章现象)的发生频率很大,次数达到一定数量,造成严重损失的重特大事故可能就无法避免了。所以严重事故是轻微事故、日常管理欠缺累积的结果。
用频率或者概率进行三者(重伤、轻伤、无伤害)之间发生的积累关系的描述,固然比较贴切。但是,在实际的应用中,总是让人有一种三个事故之间的发生关系存在很深的随机关系。随着,安全理论及事故致因模型的发展,我们现在越来越能够认识到系统的事故的发生是多方面因素造成的,有随机因素也有系统中固有的缺陷因素。因此,我们可以换一个角度进行海因里希法则的解读。其实,系统中普遍存在着各种各样的安全缺陷、也存在着各种各样的危险,包括人的危险行为。在日常的系统运行中,无论是后果严重的重伤事件还是后果较轻的无伤害事件,都是这些系统行为在安全缺陷存在的情况下不断的尝试突破安全运行边际的结果。也就是,在运行过程中,系统行为在不断的尝试冲破预设的安全边界。在一定尝试后,系统行为尝试过程中找到了能够突破安全边际(或约束)的途径,这就造成的危险的结果。当突破的程度较小时,造成了较小的突破,这就引起了无伤害事件。由于产生的结果较小或者可以忽略不计,所以这类的缺陷路径基本是在系统的设计中经常存在,往往所需要的危险行为的组合的个数较少、组合方式较简单,所以最容易出现,这就是产生无伤害事件的数量比较多的原因。再通过更多的尝试后,发现了一个能够突破安全边际程度或者打破更多安全约束的路径,
这就造成了轻伤事件的发生。轻伤事件的发生所需的危险行为的组合个数及组合方式都比无伤害事件的多及复杂,所以,轻伤事件的出现相比无伤害事件的出现要少一些。但是,在行为的出现及组合方面往往存在一定的随机性,因此轻伤事件有可能出现在无伤害事件之前。同样的道理,重伤事件所需条件的数量及组合方式就更多更复杂,因此出现的频率也就更少。但是,依然可能是第一个出现的。这也就揭示了可靠性中的浴盆曲线的最初阶段中,组件或系统故障率较高的原因了。是因为,系统在进行原始的行为组合中,产生了大量的故障组合类型,表现出来的就是系统的故障或失效,统计出来就是系统可靠性比较低。当运行到一定程度,系统已经成多次实现了正常运行,将系统中存在的一些危险的行为条件消除后,就大大降低了系统故障的可能性,故障率自然降低了。
进一步思考,海因里希法则中的比例是否应该是一成不变的。
参考文献[4]中, 智利学者Pablo Marshall等通过对智利5万家公司28个月的事件统计和观察研究后,得出如下结论:
Heinrich’s pyramid is confirmed to be statistically invalid for different economic activity sectors and geographic regions, but the discrepancy is so small that, for practical purposes, the pyramid is valid. We thus conclude that the occurrence of minor accidents is a useful signal for assessing and forecasting the overall safety performance of a firm.
也就是说,在统计的意义上,海因里希的事故三角形已经发生了变化,严格意义上说是三者之间的比例关系在智利的公司中产生了变化。笔者认为这并不证明,海因里希的事故三角形没有揭示相关的事故规律。恰恰相反,海因里希事故三角形正好揭示了当时美国的工业界的安全情况。因为,统计的结果只能呈现过去预计现在的情况。随着,安全知识的增加和系统事故致因理论的发展,整个社会的事故预防和危险消除的方式和手段也在不断的改变,总体是向着更加有效的方向发展。同时,由于系统的事故的发生也直接或间接的由更多的因素所引起,即系统的安全管理、系统的复杂程度、社会或行业整体的安全意识及安全文化等的影响。因此,系统中隐藏的造成事故的危险事件的路径(即危险行为的数量减少或组合方式的困难程度的增加)的减少,危险事件的发生也随之发生变化,无论是伤害事件还是无伤害事件。因此,海因里希三角形中的比例关系只是表征一个系统或者一个行业在一定时期的状况。当系统中的无伤害事件的发生次数增加时,也就表明系统中危险路径的增加,也就预示着系统中可能组成造成更为严重后果路径的可能性也随之增加。因此,Marshall也做出了下面的结论,笔者也是赞同的。
As postulated by Heinrich’s pyramid, if a company observes that the rate of minor accidents is increasing, then, by proportionality, it should expect an increase in the rate of more serious accidents. The pyramid is then valid as an assessment tool, as it generates credible alerts. In addition, we confirm that it is of the utmost importance for companies to record minor incidents, not only for their intrinsic relevance but also because it is an effective measure and projection of the overall safety performance of the firm.
本博文,总结了笔者对海因里希安全法则的认识。通过系统理论和系统思考的角度,分析海因里希三角形表征的安全累积的内涵及相关比例的表征意义。同时,也阐述了我们应该如何使用海因里希三角形。本文是笔者作为事故致因模型的学习及研究者的认识。
参考文献:
[1] Heinrich W H, Peterson D, Roos N. Industrial Accident Prevention. New York: McGraw-Hill Book Company, 1980.
[2] 傅贵. 安全管理学——事故预防的行为控制方法. 北京:科学出版社,2013.
[3] Reason J. Human Error. Cambridge: Cambridge University Press, 1990.
[4] Marshall P, Hirmas A, Singer M. Heinrich's pyramid and occupational safety: A statistical validation methodology. Safety Science, 2018,101:180-189.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-6 09:59
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社