登高望远分享 http://blog.sciencenet.cn/u/qsqhopeiggcas 天马行空,寻求真谛

博文

探讨新型冠状病毒肺炎疫情发展趋势 精选

已有 15843 次阅读 2020-1-31 10:42 |个人分类:热点关注|系统分类:科研笔记| 肺炎疫情, 发展趋势

近期,新型冠状病毒肺炎疫情愈演愈烈,牵动着千千万万中华儿女的心。疫情最终会走向何方?最终确诊者会有多少?多久能将疫情抑制?这些问题一直被人们关注。要准确解答这些问题,最好的方法是基于人为防控措施约束下疫情传播的动力学机制,建立物理模型进行预测分析。然而,目前我们仍对其机制了解较少,故尚难建立可靠的物理模型。鉴于此,不得不退而求其次——采用统计分析的方法。

那么,为保证分析的科学性,应采用何种数学模型呢?我们认为其应满足:

(1)简单性

因为简单的理论模型较为靠谱。

(2)能描述实际对象的演化特征

一般而言,疫情传播具有渐增期、快增期和缓增期的演化阶段。

(3)模型曾得到成功应用

于是乎,我们自然而然想到了逻辑斯蒂(Logistic)模型,因为其能满足以上条件。鉴于此,本文依据逻辑斯蒂模型,参照中华人民共和国国家卫生健康委员会发布的数据(表1),探讨了上述热点问题。

1 新型冠状病毒肺炎疫情感染情况统计

日期

确诊

人数

疑似

人数

新增确诊人数

新增疑似人数

密切

接触者

已解除

观察

正观察

人数

2020/1/10

41


0


739



2020/1/11

41


0


763

46

717

2020/1/12

41


0


763

76

687

2020/1/13

41


0


763

187

576

2020/1/14

41


0


763

450

313

2020/1/15

41


0


763

644

119

2020/1/16

45


4


763

665

98

2020/1/17

62


17


763

681

82

2020/1/18

121


59





2020/1/19

198


77


817

727

90

2020/1/20

291 

54

77 

27

1739

817

922

2020/1/21

440 

37

149 

26

2197

765

1394

2020/1/22

571 

393

131 

257

5897

969

4928

2020/1/23

830 

1072

259 

680

9507

1087

8420

2020/1/24

1287 

1965

444 

1118

15197

1230

13967

2020/1/25

1975 

2684

688 

1309

23431

325

21556

2020/1/26

2744 

5794

769 

3806

32799

583

30453

2020/1/27

4515 

6973

1771 

2077

47833

914

44132

2020/1/28

5974 

9239

1459 

3248

65537

1604

59990

2020/1/29

7711 

12167

1737 

4148

88693

2364

81947

2020/1/30

9692

15238

1982

4812

113579

4201

102427

逻辑斯蒂模型简介

逻辑斯蒂模型表明在有限环境条件下,种群的生长会随着资源的消耗而受到抑制的规律。这种规律在生态系统中几乎普遍存在,得以使生态系统中各个物种相平衡。

新型冠状病毒肺炎作为一类新生病毒,在其发展初期,由于未引起足够重视,民众防护意识较差,造成严重潜在感染。随着政府、医疗部门和公民将采取各种有效措施预防和控制疫情的蔓延,增长率在一定程度上会因此而减少,感染者数量将渐趋稳定,最终疫情不再扩散。显然,这样的发展规律可用逻辑斯蒂模型描述。

1.1 数学模型

其表达式为:

image.png                              1

式中,image.png为种群的增长率,N为种群大小,t为时间,r为瞬时增长率,K为容纳量。

对式(1)进行积分运算得到:

image.png                                 2

式中,a为常数,e为自然指数。

1.2 Kar的估计

应用逻辑斯蒂模型的核心问题是确定参数Kar,可根据表1数据,对式(2进行拟合求得。传统拟合方法有三点法(Pearl and Reed1920)、目测法(郭祖超等,1965) 平均值法(Andrewartha and Brich1954) 枚举选优法(万昌秀,1983)麦夸方法(王莽莽,1985)四点式平均值法(王振中,1987)数值法(吴新元,1990)三次设计法(潘辉,1992) 遗传算法(蔡煜东等,1993)、改进的单纯形法(吴承祯,1997)莱文贝格-马夸特法(Levenberg–Marquardt algorithm)( Madsen, Nielsen and Tingleff2004)在这些算法中,莱文贝格-马夸特法的优势在于能提供非线性最小化(局部最小)的数值解,且不具备选值主观性,故本文选用该法。

分析结果

根据表1数据,拟合得到:K=16207.67511 ± 1073.87348r=0.47064 ± 0.01792,和a=7.14264±0.40766。将其代入式(2),可得到拟合模型。从图1可看出,拟合结果很好,故可进行预测分析。根据拟合模型,我们给出了预测结果(图2)。

 

image.png

1 拟合结果 

 

image.png

2 疫情整体发展趋势

    以拟合模型的三阶导数为0所得拐点为依据,可将疫情发展趋势划分为渐增期 (115——126)、快增期 (126——21)和缓增期 (21日后)三个阶段。预计在27日确诊者数量达到K值,且自此开始确诊者数量趋于饱和。估计最终确诊人数约为1.6万人。

    上述研究表明,新型冠状病毒肺炎疫情发展规律符合逻辑斯蒂模型,确诊者整体增长曲线呈拉长S”型,可划分为渐增期、快增期和缓增期三个阶段。

    诚然,鉴于统计分析方法本身的可靠性问题,以及逻辑斯蒂模型参数的确定存在算法依赖性和样本容量依赖性问题,上述分析结果也必然具有某种非确定性,出现误差在所难免。

参考(略)




http://blog.sciencenet.cn/blog-575926-1216248.html

上一篇:重温科学精神
下一篇:愿更多的有志科学家从事前瞻性科研

35 郑永军 吴晓娲 步丰畅 张晓良 卜令泽 杨顺楷 周浙昆 王媛媛 高江勇 周忠浩 武夷山 阎影 丰成君 吕建华 杨新铁 黄永义 胡涛 周文博 施树明 田灿荣 李大斌 季丹 张文军 刘浔江 文克玲 郭奕棣 尧中华 姜进举 孙德伟 宁利中 王亚非 吕泰省 刘光银 刘学武 杨金波

该博文允许注册用户评论 请点击登录 评论 (39 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-3-29 05:14

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部