Research Notes of Zhibo分享 http://blog.sciencenet.cn/u/aurora1625

博文

Papers on LDA

已有 7034 次阅读 2011-3-5 14:00 |个人分类:LDA|系统分类:科研笔记| paper, lda

最近要做LDA和Topic Model的seminar,顺便把整理出来的一些文献放在这里。
其实D.Blei主页上面已经有一个列表了,是David Mimno维护的,但是那个列表对于我等初入此门的菜鸟来说还有很多前续的文献要读。(此列表要用IE内核浏览器打开)
下面是我的列表

On Latent Dirichlet Allocation:
  1. David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3:993–1022, 2003
  2. David M Blei and John D Lafferty. Topic models. Taylor and Francis, 2009.
  3. Ali Daud, Juanzi Li, Lizhu Zhou, and Faqir Muhammad. Knowledge discovery through directed probabilistic topic models: a survey. Frontiers of Computer Science in China, 4(2):280–301,January 2010.
  4. Mark Steyvers and Tom Griffith. Probabilistic topic models. Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, July 2006.
On variational inference:
  1. Martin Wainwright. Graphical models and variational methods:Message-passing, convex relaxations, and all that. ICML2008 Tutorial
  2. M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, Vol. 1, Numbers 1--2, pp. 1--305, December 2008
On Gibbs Sampling and MCMC:
  1. D.J.C. MacKay. Information theory, inference, and learning algorithms. Cambridge Univ Pr,2003.
  2. Gregor Heinrich. Parameter estimation for text analysis. Technical Report, 2009.
  3. Michael I. Jordan and Yair Weiss. Graphical models: Probabilistic inference.
  4. Christophe Andrieu, N De Freitas, A Doucet, and Michael I. Jordan. An introduction to MCMC for machine learning. Machine learning, pages 5–43, 2003.
  5. Yi Wang. Distributed Gibbs Sampling of Latent Dirichlet Allocation : The Gritty Details. Technical Report, 2007.
On improvment of LDA Topic Model:
  1. David M. Blei and John D Lafferty.  Correlated Topic Models.  In Advances in Neural Information Processing Systems 18, 2006.
  2. David M. Blei and John D. Lafferty. Dynamic topic models. Proceedings of the 23rd international conference on Machine learning - ICML ’06, pages 113–120, 2006.
  3. Xuerui Wang and A. McCallum.  Topics over time: a non-Markov continuous time model of topical trends. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 424–433. ACM, 2006.
On discussion of Topic Model itself:
  1. Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking LDA: Why Priors Matter. In Y Bengio, D Schuurmans, J Lafferty, C K I Williams, and A Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1973–1981. 2009.
  2. Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation methods for topic models.  In Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09, pages 1–8, New York, New York, USA, 2009. ACM Press.
暂时先列这么多,随着我的ppt的进度再补充



https://blog.sciencenet.cn/blog-255110-418973.html


下一篇:推荐理解Bayesian Method的好课程 - Radford Neal's CSC 2541
收藏 IP: 59.46.215.*| 热度|

0

发表评论 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 21:56

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部