||
2024年8月21日,Springer旗下top期刊《Rare Metals》在线发表了云南师范大物理与电子信息学院卿晨副教授与郑州大学材料科学与工程学院国家低碳环保材料智能设计国际联合研究中心郭峻岭教授和武汉理工大学化学化工与生命科学学院材料复合新技术国家重点实验室刘金平教授合作的最新研究成果《Fe doping 1T phase MoS2 with enhanced zinc-ion storage ability and durability for high-performance aqueous zinc-ion batteries》。云南师范大物理与电子信息学院为第一作者单位,云南师范大物理与电子信息学院卿晨副教授与郑州大学材料科学与工程学院国家低碳环保材料智能设计国际联合研究中心郭峻岭教授和武汉理工大学化学化工与生命科学学院材料复合新技术国家重点实验室刘金平教授为共同通讯作者。
https://link.springer.com/article/10.1007/s12598-024-02963-8
Abstract
As a promising cathode material for aqueous zinc-ion batteries, 1T-MoS2 has been extensively investigated because of its facile two-dimensional ion-diffusion channels and high electrical conductivity. However, the limited number of available Zn storage sites, i.e., limited capacity, hinders its application because the inserted Zn2+, which form strong electrostatic interactions with 1T-MoS2, preventing subsequent Zn2+ insertion. Currently, the approach of enlarging the interlayer distance to reduce electrostatic interactions has been commonly used to enhance the capacity and reduce Zn2+ migration barriers. However, an enlarged interlayer spacing can weaken the van der Waals force between 1T-MoS2 monolayers, easily disrupting the structural stability. Herein, to address this issue, an effective strategy based on Fe doping is proposed for 1T-MoS2 (Fe-1T-MoS2). The theoretical calculations reveal that Fe doping can simultaneously moderate the rate of decrease in the adsorption energy after gradually increasing the number of stored atoms, and enhance the electron delocalization on metal-O bonds. Therefore, the experiment results show that Fe doping can simultaneously activate more Zn storage sites, thus enhancing the capacity, and stabilize the structural stability for improved cycling performance. Consequently, Fe-1T-MoS2 exhibits a larger capacity (189 mAh·g−1 at 0.1 A·g−1) and superior cycling stability (78% capacity retention after 400 cycles at 2 A·g−1) than pure 1T-MoS2. This work may open up a new avenue for constructing high-performance MoS2-based cathodes.(
摘要
由于具备二维离子扩散通道和高电导率, 1T-MoS2作为水系锌(Zn) 离子电池正极材料受到了广泛的关注和研究。然而, 已嵌入的Zn离子 (Zn2+) 会与1T-MoS2形成强的静电相互作用, 阻碍Zn2+的后续嵌入, 使可用的储Zn位点减少, 导致其实际比容量偏低。目前, 增大1T-MoS2的层间距以减小嵌入Zn2+与其的静电相互作用是最常用的提升比容量的策略。然而, 扩大层间距会降低层间的范德华力, 易导致1T-MoS2层状结构的崩塌, 降低其循环稳定性。因此, 在维持1T-MoS2循环稳定性的同时提升其比容量仍是一项挑战。本工作提出一种简单的铁(Fe) 掺杂策略, 用于保持1T-MoS2循环稳定性的同时提高其比容量。理论计算表明, 在逐渐增加储存原子数后, Fe的掺杂可以同时减缓吸附能的下降速度, 并增强金属-O键上的电子离域性。因此, 实验结果表明, Fe掺杂可以同时激活更多的储锌位点, 并同时加强其结构稳定性, 从而提高循环性能。Fe掺杂的1T-MoS2正极同时展示了高比容量 (0.1 A·g−1时为189 mAh·g−1) 和良好的循环稳定性 (2 A·g−1下400次循环的容量保持率为78%) 。这项工作为构建高性能MoS2的正极材料提供一条新思路。
)
扩展阅读:
https://mp.weixin.qq.com/s/7Ggk8PYYY_fMHw47b8NsYg
卿晨,男,1990年3月出生,籍贯湖南永州,博士,凝聚态物理硕士生导师,云南省光电信息技术重点实验室成员。云南省兴滇英才计划青年项目及支持项目入选者(2019)。
一、教育经历:
2011.9-2017.7 华中师范大学 凝聚态物理 硕博连读
2007.9-2011.7 华中师范大学 物理学、数学 双学位
二、工作经历:
2020.11-至今 云南师范大学 物理与电子信息学院 副教授
2017.8-2020.10 云南师范大学 物理与电子信息学院 讲师
三、研究方向:
锂离子电池、超级电容器及水系锌离子电池正负材料的结构设计基础研究;
四、科研项目:
1、《氧空位型NiMoO4纳米棒的电子结构的第一性原理研究》:国家自然科学基金科学部综合管理项目, 2019.01-2020.20,主持;
2、《钴酸锰镍固溶体纳米片的可控制备及其水系中性电解液高压电容机理研究和非对称器超级电容器件的设计》,云南省兴滇英才支持计划青年人才配套支持项目,2019.06-2024.06,主持。
3、《氧缺陷型的钼酸镍多孔纳米片和线阵列结构可控制备及其电化学储能性能研究》:云南基础研究计划青年项目,2019.07-2022.06,主持;
五、学术成果:
1. Pengcheng Wang; Xinying Ding; Rongjie Zhe; Ting Zhu; Chen Qing*; Yingkai Liu; Hongen Wang*, Synchronous Defect and Interface Engineering of NiMoO4 Nanowire Arrays for High-Performance Supercapacitors, Nanomaterials, 2022, 12(7).
2. Yuanbin Wen, Pengcheng Wang, Xinying Ding, Xiaobo Feng and Chen Qing*, Roles of Oxygen Vacancies in NiMoO4: A First-Principles Study, Frontiers in Energy Research, 2021, 9(1): 1-5.
3. Tan, Qiuhong; Wang, Qianjin; Zhang, Chao; Gao, Kunpeng; Wang, Yuanfangzhou; Qing, Chen; Liu, Yingkai; Yu, Dapeng, Termination dependence and electric field modification of band alignment in a CNT/CH3NH3PbI3 heterojunction, Physical Chemistry Chemical Physics, 2021, 23(15): 9249-9258.
4. Chengxiang Yang; Chen Qing; Qianjin Wang; Xuejin Zhang; Jun Lou; Yingkai Liu, Synthesis of the hybrid CdS/Au flower-like nanomaterials and their SERS application, Sensors and Actuators B: Chemical , 2020, 304: 127218.
5. Wang, Qianjin; Tan, Qiuhong; Liu, Yingkai; Chen Qing; Feng, Xiaobo; Yu, Dapeng, Tunable Electronic Properties and Giant Spontaneous Polarization in Graphene/Monolayer GeS van der Waals Heterostructure, Physica Status Solidi B-Basic Solid State Physics, 2019, 256(11): 1900194.
6. Chen Qing; Yang, Chengxiang; Chen, Mingyue; Li, Wenhui; Wang, Shiyu; Tang, Yiwen, Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapaci-tive performance, Chemical Engineering Journal, 2018, 354: 182-190.
7. Chen Qing; Zhou, Qin; Qu, Gan; Chen, Xinqi; Wang, Hai; Sun, Daming; Wang, Bixiao; Xu, Lifeng; Tang, Yiwen, Designing 3D interconnected continuous nanoporous Co/CoO core-shell nanostructure electrodes for a high-performance pseudocapacitor, Nanotechnology, 2017, 28(8): 085401.
8. Chen Qing; Liu, Yanan; Sun, Xiaodan; OuYang, Xiaxia; Wang, Hai; Sun, Daming; Wang, Bixiao; Zhou, Qin; Xu, Lifeng; Tang, Yiwen, Controlled growth of NiMoO4·H2O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric supercapacitors, RSC Advances, 2016, 6(72): 67785-67793.
9. Chen Qing; Heng, Bojun; Wang, Hai; Sun, Daming; Wang, Bixiao; Sun, Miao; Guan, Shunli; Fu, Ranyan; Tang, Yiwen, Controlled facile synthesis of hierarchical CuO@MnO2 core-shell nanosheet arrays for high-performance lithium-ion battery, Journal of Alloys and Compounds, 2015, 641: 80-86.
六、联系方式:
chenqing@ynnu.edu.cn或qingchen1@126.com
1/1 | 闂備浇顕栭崜姘i幒妤婃晣闁跨噦鎷�:17 | 濠碘槅鍋撶徊楣冩偋閻樿违闁跨噦鎷� | 濠电偞鍨堕幐鎼佹晝閿濆洨鍗氶悗娑櫱滄禍婊堟煥閻曞倹瀚� | 濠电偞鍨堕幐鎼侇敄閸曨厾鍗氶悗娑櫱滄禍婊堟煥閻曞倹瀚� | 闂備礁鎼悧婊堝磻婵犲洤违闁跨噦鎷� | 闂佽崵濮撮幖顐︽偪閸ヮ灐褰掓晸閿燂拷 |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-22 02:55
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社