Maple & MapleSim分享 http://blog.sciencenet.cn/u/maplesim

博文

[转载]Integration by Pullback

已有 3727 次阅读 2020-7-28 20:00 |个人分类:Maple基础学习|系统分类:教学心得| 微分几何, 微积分 |文章来源:转载

Integration by Pullback

Frank Wang, fwang@lagcc.cuny.edu


The calculus of differential forms is a powerful tool that unifies and simplifies many mathematical concepts.  We use the Pullback command in Maple's DifferentialGeometry package to perform double, triple, line and surface integrals in James Stewart's Calculus to demonstrate the method differential forms and show the connection among these integrals. 


Like many math professors around the world, I teach from home in the spring semester of 2020 because of the coronavirus pandemic.  On March 11, 2020, New York State Governor Andrew Cuomo announced that all public university campuses would be closed.  I left my office hastily without a chance to gather my teaching notes.  One of the courses I'm teaching is Calculus 3, which covers double and triple integrals, line integrals, and surface integrals.  The calculations involved in these types of integrals tend to be lengthy, even for textbook problems.  I took the opportunity to rewrite my notes using differential forms with the assistance of Maple.  I hope this note will help math instructors double check their their calculations, and perhaps introduce modern concept of differential geometry to students.            


A volume integral leads to a 3-form, a line integral leads to a 1-form, and a surface integral leads to a two form; see Flanders' nice book.  We will give examples below based on exercises from the popular calculus textbook by James Stewart (8th edition).  


Consider two manifolds M and N, possibly of different dimension.  A manifold in the present work is simply an n-dimensional Euclidean space.  Suppose we have a smooth map f: M -> N.  This map induces a map f* from the cotangent space of N to that of M.  Because f* goes the opposite direction of f, it's called a pullback.    


Imagine that M is a three-dimensional Euclidean space with Cartesian coordinates, and N the same space but with spherical coordinates.  We evaluate three triple integrals in Stewart Section 15.8, Exercises 41--43.  

restart:
with(DifferentialGeometry): with(plots):

We first define manifolds M and N, and the transformation.

DGsetup([x,y,z], M); DGsetup([rho, theta, phi], N);

 frame name: M

frame name: N

f := Transformation(N, M, [x=rho*sin(phi)*cos(theta), y=rho*sin(phi)*sin(theta), z=rho*cos(phi)]);

image.png


Exercise 41:

Int(Int(Int(x*y, z=sqrt(x^2+y^2)..sqrt(2-x^2-y^2)), y=0..sqrt(1-x^2)), x=0..1);

image.png

We define a three-form associated with M, and pullback to N.

lambda1 := evalDG(x*y*dz &wedge dy &wedge dx);

image.png

l1p := Pullback(f, lambda1);

image.png

The triple integral is over the region shown below.

p11 := plot3d([sqrt(2)*sin(phi)*cos(theta), sqrt(2)*sin(phi)*sin(theta), sqrt(2)*cos(phi)], phi=0..Pi/4, theta=0..Pi/2):
p12 := plot3d([rho*sin(Pi/4)*cos(theta), rho*sin(Pi/4)*sin(theta), rho*cos(Pi/4)], rho=0..sqrt(2), theta=0..Pi/2):
display({p11, p12}, scaling = constrained);

image.png

We integrate the three form.

IntegrateForm(l1p, rho=0..sqrt(2), phi=0..Pi/4, theta=0..Pi/2);

image.png

Exercise 42 is below, with a similar procedure as above.

Int(Int(Int(x^2*z+y^2*z+z^3, z=-sqrt(a^2-x^2-y^2)..sqrt(a^2-x^2-y^2)), x=-sqrt(a^2-y^2)..sqrt(a^2-y^2)), y=-a..a);

image.png

lambda2 := evalDG((x^2*z+y^2*z+z^3)*dz &wedge dx &wedge dy);

image.png

l2p := Pullback(f, lambda2);

image.png

The triple integral is over the region of a sphere centered at the origin with radius a.  

plot3d([sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)], phi=0..Pi, theta=0..2*Pi);

image.png

This integral vanishes.

IntegrateForm(l2p, rho=0..a, phi=0..Pi, theta=0..2*Pi);

                               0

Exercise 43.

Int(Int(Int((x^2+y^2+z^2)^(3/2), z=2-sqrt(4-x^2-y^2)..2+sqrt(4-x^2-y^2)), y=-sqrt(4-x^2)..sqrt(4-x^2)), x=-2..2);

image.png

lambda3 := evalDG((x^2+y^2+z^2)^(3/2)*dz &wedge dy &wedge dx);

image.png

l3p := Pullback(f, lambda3);

 

image.png

l3p := evalDG(l3p) assuming rho>0;

image.png

The triple integral is over the region of a sphere whose center is (0,0,2) and radius 2.  

plot3d([2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)+2], phi=0..Pi, theta=0..2*Pi);

image.png

The integration of the three-form is below.

IntegrateForm(l3p, theta=0..2*Pi, phi=0..Pi/2, rho=0..4*cos(phi));

 

image.png

restart:

Before continuing additional examples, let us review an elementary problem in single-variable calculus.  Consider Stewart Section 5.5 Substitution Rule Example 1:

Int(x^3*cos(x^4+2), x);


In the textbook students learn the method of setting u=g(x)=x^4+2 and evaluating du=g'(x)dx.  Here we consider two one-dimensional manifolds, M and N, with coordinate x and u, respectively.  

with(DifferentialGeometry):

DGsetup([x], M); DGsetup([u], N);

 frame name: M

frame name: N

The transformation from M to N is the following.

g := Transformation(M, N, [u=x^4+2]);

image.png

omega := evalDG(x^3*cos(x^4+2)*dx);

image.png

But to pullback from the cotangent space of M to that of N, we need the inverse transformation (hence the name pullback).

ginv := InverseTransformation(g);

image.png

omega1 := Pullback(ginv, omega);

image.png

i1 := IntegrateForm(omega1, u);

  

image.png

Now we pullback the function (a zero-form) to M.

Pullback(g, i1);

image.png

restart:

The component expression of f* is given by the Jacobian matrix, as illustrated in next problem (Stewart Section 15.9 Exercise 18): evaluate the double integral of the function f(x,y)=x^2-x*y+y^2 over the interior of an ellipse.

plot3d(x^2-x*y+y^2, x=-2..2, y=-2..2);

image.png

plots[implicitplot](x^2-x*y+y^2=2, x=-2..2, y=-2..2);

image.png

We can use VectorCalculus[int] to find the answer.

with(VectorCalculus):
int(x^2-x*y+y^2, [x,y]=Ellipse(x^2-x*y+y^2-2));

image.png

We go through this calculation in steps.  Firstly, we define manifolds M with coordinates (x,y) and N wit coordinates (u,v), and the transformation (given in the textbook).  

with(DifferentialGeometry):
DGsetup([x, y], M); DGsetup([u, v], N);

frame name: M

frame name: N

f := Transformation(N, M, [x=sqrt(2)*u-sqrt(2/3)*v, y=sqrt(2)*u+sqrt(2/3)*v]);

image.png

The Jacobian matrix is below.

Tools:-DGinfo(f, "JacobianMatrix");

image.png

The two-form in connection with this double integral is below.  Using pullback, the two-form is in the space cotangent to N.

alpha := evalDG((x^2 - x*y+y^2)*dx &wedge dy);

image.png

When we pullback the ellipse, we find a unit circle in N.

e := Pullback(f, x^2-x*y+y^2-2);

image.png

expand(e);

image.png

It is apparently more convenient to use polar coordinates.  Below is the transformation.

DGsetup([r, theta], M2);

frame name: M2

f2 := Transformation(M2, N, [u=r*cos(theta), v=r*sin(theta)]);

image.png

alpha2 := Pullback(f2, alpha1);

image.png

The integration of the two-form is shown below.

IntegrateForm(alpha2, r=0..1, theta=0..2*Pi);

image.png

restart:

Consider Stewart Section 16.2 Exercise 21, a line integral over a vector field visualized below.

with(plots):
pf := fieldplot3d([sin(x), cos(y), x*z], x=-1..1, y=-1..1, z=-1..1, color = blue):
pc := spacecurve([t^3, -t^2, t], t=0..1, color = red, thickness = 2):
display([pf, pc]);

image.png

M is our usual three-dimensional Euclidean space, and N is a one-dimensional manifold with coordinate t.  

with(DifferentialGeometry):
DGsetup([x, y, z], M): DGsetup([t], N);

 frame name: N

The transformation is the spacecurve given.

f := Transformation(N, M, [x=t^3, y=-t^2, z=t]);

image.png

We define the one-form, and find its pullback.

omega := evalDG(sin(x)*dx + cos(y)*dy + x*z*dz);

image.png

The one-form can be integrated.

IntegrateForm(omega1, t=0..1);

image.png

restart:

The image below is based on the surface integral over a vector field, Stewart Section 16.7 Exercise 28.

with(plots):
pf := fieldplot3d([y*z, z*x, x*y], x=0..2, y=0..Pi, z=0..2, color = red):
ps := plot3d(x*sin(y), x=0..2, y=0..Pi, style = hidden):
display([pf, ps]);

image.png

We consider M as the three-dimensional Euclidean space, and N the xy-plane.  The graph of z=x*sin(y) is the surface given in the exercise.

with(DifferentialGeometry):
DGsetup([x, y, z], M); DGsetup([x, y], N);

frame name: M

frame name: N

f := Transformation(N, M, [x=x, y=y, z=x*sin(y)]);

image.png

ChangeFrame(M);

N

The following is the two-form and its pullback.

alpha := evalDG(y*z*dy &wedge dz + z*x*dz &wedge dx + x*y*dx &wedge dy);

image.png

alpha1 := Pullback(f, alpha);

  

image.png

The integration of the two form is below.

IntegrateForm(alpha1, x=0..2, y=0..Pi);

image.png

restart:

Let us work out another surface integral over a vector field, Stewart Section 16.7 Exercise 26.

with(plots):
pf := fieldplot3d([y, -x, 2*z], x=-2..2, y=-2..2, z=0..2, color = red, scaling = constrained):
ps := plot3d([2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)], phi=0..Pi/2, theta=0..2*Pi, style = hidden, scaling = constrained):
display([pf, ps]);

image.png

The transformation below should be familiar.

with(DifferentialGeometry):
DGsetup([x, y, z], M): DGsetup([phi, theta], N):
f := Transformation(N, M, [x=2*sin(phi)*cos(theta), y=2*sin(phi)*sin(theta), z=2*cos(phi)]);

image.png

We define the two-form and find its pullback, then integrate the pullback.  

alpha := evalDG(y*dy &wedge dz - x*dz &wedge dx +2*z*dx &wedge dy);

image.png

alpha1 := Pullback(f, alpha);

image.png

IntegrateForm(alpha1, theta=0..2*Pi, phi=0..Pi/2);

image.png

restart:

Stokes' and Divergence Theorems can be elegantly written using differential forms.

image.png

We verify Stokes' Theorem as instructed in Stewart Section 16.8.  Consider the line integral over a vector field, Exercise 15, where the curve is the boundary of the surface shown below. 

with(plots):
pf := fieldplot3d([y, z, x], x=-1..1, y=-1..1, z=-1..1, color=blue):
ps := plot3d([sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)], phi=0..Pi, theta=-Pi/2..Pi/2, style = hidden, scaling = constrained):
display({pf, ps});

image.png

with(DifferentialGeometry):

Let M be the three-dimensional Euclidean space, N be one dimensional space with coordinate t, and N1 be two-dimensional space with coordinates theta and phi.  

DGsetup([x,y,z], M): DGsetup([t], N): DGsetup([theta,phi], N1):
f1 := Transformation(N, M, [x=cos(t), y=0, z=sin(t)]);

image.png

We define the one-form and perform the line integral using pullback as before.  

omega := evalDG(y*dx + z*dy + x*dz);

image.png

omega1 := Pullback(f1, omega);

image.png

IntegrateForm(omega1, t=0..2*Pi);

image.png

The curl of a vector corresponds to the exterior derivative of the one form.

alpha := ExteriorDerivative(omega);

image.png

After parametrizing the hemisphere, we pullback the two-form.

f2 := Transformation(N1, M, [x=sin(phi)*cos(theta), y=sin(phi)*sin(theta), z=cos(phi)]);

image.png

alpha1 := Pullback(f2, alpha);

image.png

The integration of the two form over the surface is the same as the line integral above.

IntegrateForm(alpha1, phi=0..Pi, theta=-Pi/2..Pi/2);

image.png

restart:

The figure below is based on Stewart Section 16.8 Exercise 14, another exercise to verify Stokes' Theorem.

with(plots):
pf := fieldplot3d([-2*y*z, y, 3*x], x=-3..3, y=-3..3, z=0..6, color=blue):
ps := plot3d([r*cos(theta), r*sin(theta), 5-r^2], r=0..2, theta=0..2*Pi, style = hidden, scaling = constrained):
display({pf, ps});

image.png

with(DifferentialGeometry):
DGsetup([x,y,z], M): DGsetup([t], N): DGsetup([x, y], M1):
f1 := Transformation(N, M, [x=2*cos(t), y=2*sin(t), z=1]);

image.png

We define the one-form and evaluate the line integral using pullback.

omega := evalDG(-2*y*z*dx + y*dy + 3*x*dz);

image.png

omega1 := Pullback(f1, omega);

image.png

IntegrateForm(omega1, t=0..2*Pi);

image.png

The exterior derivative of the one-form corresponds to the curl.

alpha := ExteriorDerivative(omega);

image.png

f2 := Transformation(M1, M, [x=x, y=y, z=5-x^2-y^2]);

image.png

alpha1 := Pullback(f2, alpha);

image.png

It is easier to integrate this two-form using polar coordinates, as shown in the following.

DGsetup([r, theta], N2);

frame name: N2

f3 := Transformation(N2, M1, [x=r*cos(theta), y=r*sin(theta)]);

image.png

alpha2 := Pullback(f3, alpha1);

image.png

We verify Stokes' Theorem.

IntegrateForm(alpha2, r=0..2, theta=0..2*Pi);

image.png

restart:

Below is the surface integral over a given vector field, taken from Stewart Section 16.9 Exercise 4.  We will evaluate the surface integral using the Divergence Theorem first, then calculate the surface integrals directly.

with(plots):
pf := fieldplot3d([x^2, -y, z], x=-1..3, y=-3..3, z=-3..3, color = blue, scaling = constrained);

image.png

ps1 := plot3d([x, 3*cos(theta), 3*sin(theta)], x=0..2, theta=0..2*Pi, style = hidden);

image.png

ps2 := plot3d([0, r*cos(theta), r*sin(theta)], r=0..3, theta=0..2*Pi, style = hidden);

image.png

ps3 := plot3d([2, r*cos(theta), r*sin(theta)], r=0..3, theta=0..2*Pi, style = hidden);

image.png

display({pf, ps1, ps2, ps3});

image.png

with(DifferentialGeometry):
DGsetup([x,y,z], M);

frame name: M

We define the two-form, and the exterior derivative of it corresponds to the divergence of the vector field.

alpha := evalDG(x^2*dy &wedge dz - y*dz &wedge dx + z*dx &wedge dy);

image.png

lambda := ExteriorDerivative(alpha);

image.png

It is more convenient to integrate this three-form using cylindrical coordinates, as demonstrated below. 

DGsetup([x, r, theta], N);

frame name: N

f := Transformation(N, M, [x=x, y=r*cos(theta), z=r*sin(theta)]);

image.png

lambda1 := Pullback(f, lambda);

image.png

IntegrateForm(lambda1, x=0..2, r=0..3, theta=0..2*Pi);

image.png

To calculate the surface integral, we need to deal with 3 surfaces.  Surfaces 1, 2, and 3 are depicted above in ps1, ps2, and ps3, respectively.  The pullback of the two-form for the three surfaces are below.

DGsetup([r, theta], N1); DGsetup([x, theta], N2);

 frame name: N1

frame name: N2

f1 := Transformation(N2, M, [x=x, y=3*cos(theta), z=3*sin(theta)]);

image.png

f2 := Transformation(N1, M, [x=0, y=r*cos(theta), z=r*sin(theta)]);

image.png

f3 := Transformation(N1, M, [x=2, y=r*cos(theta), z=r*sin(theta)]);

image.png

alpha1 :=Pullback(f1, alpha);

image.png

alpha2 := Pullback(f2, alpha);

image.png

alpha3 := Pullback(f3, alpha);

image.png

IntegrateForm(alpha1, x=0..2, theta=0..2*Pi);

 0

IntegrateForm(alpha2, r=0..3, theta=0..2*Pi);

0

IntegrateForm(alpha3, r=0..3, theta=0..2*Pi);

image.png

The flux across surfaces 1 and 2 is zero, and flux across surface 3 is the same as the integral obtained from the Divergence Theorem.


References

1. James Stewart (2016). Calculus (Early Transcendentals), 8th edition.  Boston: Cengage.

2. Harley Flanders (1963). Differential Forms with Applications to the Physical Sciences.  New York: Dover.

3. David M. Bressoud (1991). Second Year Calculus.  New York: Springer.  




https://blog.sciencenet.cn/blog-516836-1244017.html

上一篇:[转载]Maple量子化学工具箱 - 2020版新增功能
下一篇:子弹轨迹模型
收藏 IP: 183.193.139.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 04:38

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部