||
近场动力学领域最新、最全研究汇总:《Handbook of Peridynamic Modeling》一书终于出版发行了!
自2013年9月开始,在Bobaru教授、Foster教授、Geubelle教授和Silling博士的领导下组织国际上各个近场动力学理论的知名研究团队编写了此书,历时三年,将近600页,汇集了近年来各家关于近场动力学理论的重要研究成果。我也参与其中,撰写了本书第14章中关于能量基的耦合框架部分。
这本书对希望学习和从事近场动力学理论研究的同学和老师会有很大的借鉴作用。不过价格不菲,亚马逊上精装版卖200刀。经费充足的小伙伴们可以考虑购买,也可以购买电子版:首先需要一个Bookshelf账号,然后有在线和离线软件两种阅读方式。电子书的具体价格我不知道,应该比纸质书要便宜吧。
电子书在线阅读登陆界面(需要购买哦):
http://bookshelf.vitalsource.com/
电子书桌面阅读软件下载:
http://www.vitalsource.com/downloads
我把目录贴在下面,大家先睹为快:
Handbook of Peridynamic Modeling
Contents
Foreword
Preface
List of Figures
List of Tables
Contributors
I The Need for Nonlocal Modeling and Introduction to Peridynamics
1 Why Peridynamics?
Stewart A. Silling
1.1 The mixed blessing of locality
1.2 Origins of nonlocality in a model
1.2.1 Long-range forces
1.2.2 Coarsening a fine-scale material system
1.2.3 Smoothing of a heterogeneous material system
1.3 Nonlocality at the macroscale
1.4 The mixed blessing of nonlocality
References
2 Introduction to Peridynamics
Stewart A. Silling
2.1 Equilibrium interms of integral equations
2.2 Material modeling
2.2.1 Bond-based materials
2.2.2 Relation between bond densities and flux
2.2.3 Peridynamic states
2.2.4 Ordinary state-based materials
2.2.5 Correspondence materials
2.2.6 Discrete particles as peridynamic bodies
2.2.7 Setting the horizon
2.2.8 Linearized peridynamics
2.3 Plasticity
2.3.1 Bond-based microplastic material
2.3.2 LPS material with plasticity
2.4 Damage and fracture
2.4.1 Damage in bond-based models
2.4.2 Damage in ordinary state-based material models
2.4.3 Damage in correspondence material models
2.4.4 Nucleation strain
2.5 Treatment of boundaries and interfaces
2.5.1 Bond-based materials
2.5.2 State-based materials
2.6 Emu numerical method
2.7 Conclusions
References
II Mathematics,Numerics, and Software Tools of Peridynamics
3 Nonlocal Calculus of Variations and Well-Posedness of Peridynamics
Qiang Du
3.1 Introduction
3.2 A brief review of well-posedness results
3.3 Nonlocal balance laws and nonlocal vector calculus
3.4 Nonlocal calculus of variations — an illustration
3.5 Nonlocal calculus of variations — further discussions
3.6 Summary
References
4 Local Limits and Asymptotically Compatible Discretizations
Qiang Du
4.1 Introduction
4.2 Local PDE limits of linear peridynamic models
4.3 Discretization schemes and discrete local limits
4.4 Asymptotically compatible schemes for peridynamics
4.5 Summary
References
5 Roadmap for Software Implementation
David Littlewood
5.1 Introduction
5.2 Evaluating the internal force density
5.3 Bond damage and failure
5.4 The tangent stiffness matrix
5.5 Modeling contact
5.6 Mesh free discretizations for peridynamics
5.7 Proximity search for identification of pairwise interactions
5.8 Time integration
5.8.1 Explicit time integration for transient dynamics
5.8.2 Estimating the maximum stable time step
5.8.3 Implicit time integration for quasi-statics
5.9 Example simulations
5.9.1 Fragmentation of a brittle disk resulting from impact
5.9.2 Quasi-static simulation of a tensile test
5.10 Summary
References
III Material Models and Links to Atomistic Models
6 Constitutive Modeling in Peridynamics
John T. Foster
6.1 Introduction
6.2 Kinematics, momentum conservation, and terminology
6.3 Linear peridynamic isotropic solid
6.3.1 Plane elasticity
6.3.1.1 Plane stress
6.3.1.2 Plane strain
6.3.2 “Bond-based” theories as a special case
6.3.3 On the role of the influence function
6.3.4 Other elasticity theories
6.4 Finite Deformations
6.4.1 Invariants of peridynamic scalar-states
6.5 Correspondence models
6.5.1 Non-ordinary correspondence models for solid mechanics
6.5.2 Ordinary correspondence models for solid mechanics
6.6 Plasticity
6.6.1 Yield surface and flow rule
6.6.2 Loading/unloading and consistency
6.6.3 Discussion
6.7 Non-ordinary models
6.7.1 A non-ordinary beam model
6.7.2 A non-ordinary plate/shell model
6.7.3 Other non-ordinary models
6.8 Final Comments
References
7 Links between Peridynamic and Atomistic Models
Pablo Seleson and Michael L. Parks
7.1 Introduction
7.2 Molecular dynamics
7.3 A meshfree discretization of peridynamic models
7.4 Upscaling molecular dynamics to peridynamics
7.4.1 A one-dimensional nonlocal linear springs model
7.4.2 A three-dimensional embedded-atom model
7.5 Computational speedup through upscaling
7.6 Concluding remarks
References
8 Absorbing Boundary Conditions with Verification
Raymond A. Wildman and George A. Gazonas
8.1 Introduction
8.2 A PML for state-based peridynamics
8.2.1 Two-dimensional (2D), state-based peridynamics review
8.2.2 Auxiliary field formulation and PML application
8.2.3 Numerical examples
8.3 Verification of cone and center crack problems
8.3.1 Dimension alanalysis of Hertzian cone crack development in brittle elastic solids
8.3.2 State-based verification of a cone crack
8.3.3 Bond-based verification of a center crack
8.4 Verification of an axisymmetric indentation problem
8.4.1 Formulation
8.4.2 Analytical verification
References
IV Modeling Material Failure and Damage
9 Dynamic Brittle Fracture as an Upscaling of Unstable Mesoscopic Dynamics
Robert P. Lipton
9.1 Introduction
9.2 The macroscopice volution of brittle fracture as a small horizon limit of mesoscopic dynamics
9.3 Dynamic instability and fracture initiation
9.4 Localization of dynamic instability in the small horizon-macroscopic limit
9.5 Free crack propagation in the small horizon-macroscopic limit
9.6 Summary
References
10 Crack Branching in Dynamic Brittle Fracture
Florin Bobaru and Guanfeng Zhang
10.1 Introduction
10.2 A brief review of literature on crack branching
10.2.1 Theoretical models and experimental results on dynamic brittle fracture and crack branching
10.2.2 Computations of dynamic brittle fracture based on FEM
10.2.3 Dynamic brittle fracture results based on atomistic modeling
10.2.4 Dynamic brittle fracture based on particle and lattice-based methods
10.2.5 Phase-field models in dynamic fracture
10.2.6 Results on dynamic brittle fracture from peridynamic models
10.3 Brief review of the bond-based peridynamic model
10.4 An accurate and efficient quadrature scheme
10.5 Peridynamic results for dynamic fracture and crack branching
10.5.1 Crack branching in soda-lime glass
10.5.1.1 Load case1: stress on boundaries
10.5.1.2 Load case2: stress on pre-crack surfaces
10.5.1.3 Load case3: velocity boundary conditions
10.5.2 Crack branching in homalite
10.5.2.1 Load case1: stress on boundaries
10.5.2.2 Load case2: stress on pre-crack surfaces
10.5.2.3 Load case3: velocity boundary conditions
10.5.3 Influence of sample geometry
10.5.3.1 Load case1: stress on boundaries
10.5.3.2 Load case 2: stress on pre-crack surfaces
10.5.3.3 Load case3: velocity boundary conditions
10.6 Discussion of crack branching results
10.7 Why do cracks branch?
10.8 The importance of nonlocal modeling in crack branching
10.9 Conclusions
References
11 Relations between Peridynamic and Classical Cohesive Models
Scot M. Breitenfeld, Philippe H. Geubelle, Olaf Weckner, and Stewart A. Silling
11.1 Introduction
11.2 Analytical PD-based normal cohesive law
11.2.1 Case 1 — No bonds have reached critical stretch
11.2.2 Case 2 — Bonds have exceeded the critical stretch
11.2.3 Numerical approximation of PD-based cohesive law
11.3 PD-based tangential cohesive law
11.3.1 Case 1 — No bonds have reached critical stretch
11.3.2 Case 2 — Bonds have exceeded the critical stretch
11.4 PD-based mixed-mode cohesive law
11.5 Conclusions
References
12 Peridynamic Modeling of Fiber-reinforced Composites
Erdogan Madenci and Erkan Oterkus
12.1 Introduction
12.2 Peridynamic analysis of a lamina
12.3 Peridynamic analysis of a laminate
12.4 Numerical results
12.5 Conclusions
12.6 Appendix A: PD material constants of a lamina
12.6.1 Simple shear
12.6.2 Uniaxial stretch in the fiber direction
12.6.3 Uniaxial stretch in the transverse direction
12.6.4 Biaxial stretch
12.7 Appendix B: Surface correction factors for a composite lamina
12.8 Appendix C: PD interlayer and shear bond constants of a laminate
12.9 Appendix D: Critical Stretch Values for Bond Constants
References
13 Peridynamic Modeling of Impact and Fragmentation
Florin Bobaru, Zhanping Xu, and Yenan Wang
13.1 Introduction
13.2 Convergence studies and damage models that influence the damage behavior
13.2.1 Damage-dependent critical bond strain
13.2.2 Critical bond strain dependence on compressive strains along other directions
13.2.3 Surface effect in impact problems
13.2.4 Convergence study for impact on a glass plate
13.3 Impact on a multilayered glass system
13.3.1 Modelde scription
13.3.2 A comparison between FEM and peridynamics for the elastic response of a multilayered systemto impact
13.4 Computational results for damage progression in the seven-layer glass system
13.4.1 Damage evolution for the cross section
13.4.2 Damage evolution in the first layer
13.4.3 Damage evolution in the second layer
13.4.4 Damage evolution in the fourth layer
13.4.5 Damage evolution in the seventh layer
13.5 Conclusions
References
V Multiphysics and Multiscale Modeling
14 Coupling Local and Nonlocal Models
Yan Azdoud, Fei Han, David J. Littlewood, Gilles Lubineau,and Pablo Seleson
14.1 Introduction
14.2 Energy-based blending schemes
14.2.1 The Arlequín method
14.2.1.1 Description of the coupling model
14.2.1.2 A numerical example
14.2.2 The morphing method
14.2.2.1 Overview
14.2.2.2 Description of the morphing method
14.2.2.3 One-dimensional analysis of ghost forces
14.2.2.4 Numerical examples
14.3 Force-based blending schemes
14.3.1 Convergence of peridynamic models to classical models
14.3.2 Derivation of force-based blending schemes
14.3.3 A numerical example
14.4 Summary
References
15 A Peridynamic Model for Corrosion Damage
Ziguang Chen and Florin Bobaru
15.1 Introduction
15.2 Electrochemical kinetics
15.3 Problem formulation of ID pitting corrosion
15.4 The peridynamicformulation for ID pitting corrosion
15.5 Results and discussion of ID pitting corrosion
15.5.1 Pit corrosion depth proportional to √t
15.5.2 Activation-controlled, diffusion-controlled, and IR-controlled corrosion
15.6 Corrosion damage and the Concentration-Dependent Damage (CDD) model
15.6.1 Damage evolution
15.6.2 Saturated concentration
15.7 Formulation and results of 2D and 3D pitting corrosion
15.7.1 PD formulation of 2D and 3D pitting corrosion
15.7.2 The Concentration-Dependent Damage (CDD) model for pitting corrosion: example in 2D
15.7.3 A coupled corrosion/damage model for pitting corrosion: 2D example
15.7.4 Diffusivity affects the corrosion rate
15.7.5 Pitting corrosion with the CDD+DDC model in 3D
15.8 Pitting corrosion in heterogeneous materials: examples in 2D
15.8.1 Pitting corrosion in layer structures
15.8.2 Pitting corrosion in a material with inclusions: a 2D example
15.9 Conclusions
15.10 Appendix
15.10.1 Convergence study for ID diffusion-controlled corrosion
15.10.2 Convergence study for 2D activation-controlled corrosion with Concentration-Dependent Damage model
References
16 Peridynamics for Coupled Field Equations
Erdogan Madenci and Selda Oterkus
16.1 Introduction
16.2 Diffusion equation
16.2.1 Thermal diffusion
16.2.2 Moisture diffusion
16.2.3 Electrical conduction
16.3 Coupled field equations
16.3.1 Thermomechanics
16.3.1.1 Thermal diffusion with a structural coupling term
16.3.1.2 Equation of motion with a thermal coupling term
16.3.2 Porelasticity
16.3.2.1 Mechanical deformation due to fluid pressure
16.3.2.2 Fluid flow in porous medium
16.3.3 Electromigration
16.3.4 Hygrothermomechanics
16.4 Numerical solution to peridynamic field equations
16.4.1 Correction of PD material parameters
16.4.2 Boundary conditions
16.4.2.1 Essential boundary conditions
16.4.2.2 Natural boundary conditions
16.4.2.3 Example 1
16.4.2.4 Example 2
16.4.2.5 Example 3
16.5 Applications
16.5.1 Coupled nonuniform heating and deformation
16.5.2 Coupled nonuniform moisture and deformation in a square plate
16.5.3 Coupled fluid pore pressure and deformation
16.5.4 Coupled electrical, temperature, deformation, and vacancy diffusion
16.6 Remarks
References
Index
近场动力学(简称PD)理论是国际上刚兴起的基于非局部作用思想建立的一整套力学理论体系,该理论通过求解空间积分方程描述物质力学行为,避免了基于连续性假设建模和求解空间微分方程的传统宏观方法在面临不连续问题时的奇异性[1],所以特别适用于模拟材料的损伤和断裂过程。然而,因为PD模型的数学理论较深,且新概念多用英文表述,所以很多朋友在学习时会遇到一些困难。在朋友的启发下,我想到在微信上建立此公众号,希望将研究PD理论的朋友们聚集起来,分享PD研习路上的点点滴滴,一起解决各自的难题,共同推动PD理论的发展!
[1] 黄 丹, 章 青, 乔丕忠, 沈 峰, 近场动力学方法及其应用. 力学进展, 2010. 40(4): p. 448-459.
每期文章评述的首发平台是微信公众号:近场动力学PD讨论班
也可以搜索微信号:peridynamics
或扫如下二维码加入公众号:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-27 07:48
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社