Fig. 1Three-dimensional melt distribution of olivine basalt aggregates. The size of each cube is 140 μm by 140 μm by 140 μm. The melt volume fractions are (A) 0.02, (B) 0.05, (C) 0.10, and (D) 0.20. Gray represents the interfaces between melt and olivine crystals; red represents the interior of melt channels. The hollow space is where olivine crystals reside. Interconnected melt channels along grain edges are observed in all four samples.
3D复原结果显示,在0.02-0.20熔体比例条件下熔体通道沿着颗粒边缘形成了相互连通的构架(Fig.1 and movie S1),与相同体系的理论预测是一致的(12,13)。但是,橄榄石-玄武岩集合体中熔体分布比预计的要更加复杂,其中连通的熔体构架是不均一的。在Φ=0.10和0.20时,熔体同时润湿(wet)了颗粒边缘和相当一部分的颗粒边界(Fig.1 C and D)。在Φ=0.05时,熔体从颗粒边界处后退并主要沿着三联点分布(Fig.1B)。但在Φ=0.02时,熔体薄膜沿少量颗粒边界分布,与前人2D熔体分布研究结果一致(15),明显可以看到一个由直接连通的熔体通道所组成的构架(Fig.1A)。尽管我们的成像技术无法分辨纳米级厚度的熔体薄膜(15),但是所有样品中熔体通道连通构架的存在表明橄榄石-玄武岩体系的渗透率并未明显偏离幂律渗透率-孔隙度关系,即使在Φ=0.02条件下。
Fig. 2 Interconnectivity of melt channels in olivine-basalt aggregates with melt fractions of (A) 0.02, (B) 0.05, (C) 0.10, and (D) 0.20. The thickness of the channels is scaled to the actual size of the melt channel width. The multifurcation of channels along grain boundaries is an indication that the AVIZO skeletonization program (21) breaks down at grain boundary residing melt.
Fig. 3Histogram of connectivity for samples with melt fraction of (A) 0.02 (m = 731), (B) 0.05 (m = 2622), (C) 0.10 (m = 1211), and (D) 0.20 (m = 875), where m is the number of nodes present in the simplified skeleton. The insets display a representative volume of the idealized network (bounding box is 100 μm by 100 μm by 100 μm) with melt channels shown as gray tubes and nodes as spheres color-coded for connectivity: 1, black; 3, red; 4, green; 5, blue; 6, magenta; 7 and above, yellow.
↵D. W. Sparks, E. M. Parmentier, The structure of three-dimensional convection beneath oceanic spreading centres. Geophys. J. Int.112, 81 (1993). doi:10.1111/j.1365-246X.1993.tb01438.xCrossRef
↵L. B. Hebert, L. G. J. Montési, Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochem. Geophys. Geosyst.11, Q12008 (2010). doi:10.1029/2010GC003270 CrossRef
↵P. D. Asimow, M. M. Hirschmann, M. S. Ghiorso, M. J. O’Hara, E. M. Stolper, The effect of pressure-induced solid-solid phase transitions on decompression melting of the mantle. Geochim. Cosmochim. Acta59, 4489 (1995). doi:10.1016/0016-7037(95)00252-U CrossRefWeb of Science
↵T. M. S. Team, The MELT Seismic Team, Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science280, 1215 (1998). doi:10.1126/science.280.5367.1215 pmid:9596564 CrossRefMedlineWeb of Science
↵R. L. Evans et al., Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science286, 752 (1999). doi:10.1126/science.286.5440.752 pmid:10531056 CrossRefMedlineWeb of Science
↵E. M. Klein, C. H. Langmuir, Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res.92 (B8), 8089 (1987). doi:10.1029/JB092iB08p08089 CrossRef
↵A. V. Sobolev, N. Shimizu, Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature363, 151 (1993). doi:10.1038/363151a0 CrossRef
↵M. Spiegelman, T. Elliott, Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett.118, 1 (1993). doi:10.1016/0012-821X(93)90155-3 CrossRefWeb of Science
↵C. C. Lundstrom, J. B. Gill, Q. Williams, M. R. Perfit, Mantle melting and basalt extraction by equilibrium porous flow. Science270, 1958 (1995). doi:10.1126/science.270.5244.1958 Abstract/FREE Full Text
↵D. P. McKenzie, Constraints on melt generation and transport from U-series activity ratios. Chem. Geol.162, 81 (2000). doi:10.1016/S0009-2541(99)00126-6 CrossRefWeb of Science
↵K. W. W. Sims et al., Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta66, 3481 (2002). doi:10.1016/S0016-7037(02)00909-2 CrossRefWeb of Science
↵C. S. Smith , Some elementary principles of polycrystalline microstructure. Metall. Rev.9, 1 (1964).
↵N. von Bargen, H. S. Waff, Permeabilities, interfacial areas and curvatures in partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res.91 (B9), 9261 (1986). doi:10.1029/JB091iB09p09261 CrossRef
↵U. H. Faul , Melt retention and segregation beneath mid-ocean ridges. Nature410, 920 (2001). doi:10.1038/35073556 pmid:11309614 CrossRef
↵M. Cmíral, J. D. Fitz Gerald, U. H. Faul, D. H. Green, A close look at dihedral angles and melt geometry in olivine-basalt aggregates; a TEM study. Contrib. Mineral. Petrol.130, 336 (1998). doi:10.1007/s004100050369 CrossRefWeb of Science
↵D. A. Wark, C. A. Williams, E. B. Watson, J. D. Price, Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. J. Geophys. Res.108, 2050 (2003). http://www.agu.org/journals/ABS/2003/2001JB001575.shtml doi:10.1029/2001JB001575 pmid:14686320 CrossRefMedline
↵M. J. Daines, F. M. Richter, An experimental method for directly determining the interconnectivity of melt in a partially molten system. Geophys. Res. Lett.15, 1459 (1988). doi:10.1029/GL015i013p01459 Web of Science
↵D. Laporte, E. B. Watson, Direct observation of near-equilibrium pore geometry in synthetic quartzites at 600°-800°C and 2-10.5 kbar. J. Geol.99, 873 (1991). doi:10.1086/629558 Web of Science
↵D. A. Wark, E. B. Watson, Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet. Sci. Lett.164, 591 (1998). doi:10.1016/S0012-821X(98)00252-0 CrossRefWeb of Science
↵Synthetic olivine-basalt aggregates with melt fractions of 0.02, 0.05, 0.10, and 0.20 were equilibrated at 1.5 GPa and 1350°C (21).
↵Materials and methods are available as supporting material on Science Online.
↵W. Zhu, G. Hirth, A network model for permeability in partially molten rocks. Earth Planet. Sci. Lett.212, 407 (2003). doi:10.1016/S0012-821X(03)00264-4 CrossRefWeb of Science
↵M. J. Cheadle, M. T. Elliott, D. P. McKenzie, Percolation threshold and permeability of crystallizing igneous rocks: The importance of textural equilibrium. Geology32, 757 (2004). doi:10.1130/G20495.1 Abstract/FREE Full Text
↵J. A. D. Connolly, M. W. Schmidt, G. Solferino, N. Bagdassarov, Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature462, 209 (2009). doi:10.1038/nature08517 pmid:19907492 CrossRefMedlineWeb of Science
↵O. van Genabeek, D. H. Rothman, Macroscopic manifestations of microscopic flows through porous media, Phenomenology from simulation. Annu. Rev. Earth Planet. Sci.24, 63 (1996). doi:10.1146/annurev.earth.24.1.63 CrossRefWeb of Science
↵S. R. Hart, Equilibration during mantle melting: A fractal tree model. Proc. Natl. Acad. Sci. U.S.A.90, 11914 (1993). doi:10.1073/pnas.90.24.11914 pmid:11607445 Abstract/FREE Full Text
↵P. B. Kelemen, N. Shimizu, V. J. M. Salters, Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature375, 747 (1995). doi:10.1038/375747a0 CrossRef
↵B. K. Holtzman et al., Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science301, 1227 (2003). doi:10.1126/science.1087132 pmid:12947196 CrossRefMedlineWeb of Science
↵M. Jull, P. B. Kelemen, K. W. W. Sims, Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochim. Cosmochim. Acta66, 4133 (2002). doi:10.1016/S0016-7037(02)00984-5 CrossRefWeb of Science
↵M. Spiegelman, D. McKenzie, Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth Planet. Sci. Lett.83, 137 (1987). doi:10.1016/0012-821X(87)90057-4 CrossRefWeb of Science
This work is supported by NSF-EAR 0753505 (W.Z. and G.A.G.) and NSF-OCE 0937277 (L.G.J.M.). F.F. was supported by the Western Australian State Government through the Premier’s Fellowship Program and the Australian Synchrotron Research Program, funded by the Commonwealth of Australia under the Major National Research Facilities Program. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. We thank X. Xiao and J. Liu for their assistance. We furthermore acknowledge the Centre for Microscopy, Characterisation and Analysis for use of an electron microprobe and iVEC for use of their data storage and visualization facilities.