Yetta分享 http://blog.sciencenet.cn/u/yetta

博文

[转载]结合小波域判别器的U-Net模型用于视网膜血管分割

已有 73 次阅读 2025-12-5 09:37 |系统分类:论文交流|文章来源:转载

结合小波域判别器的U-Net模型用于视网膜血管分割

全海燕,王宗喜,张乐怡

(昆明理工大学 信息工程与自动化学院,昆明 650500) 

 :针对U-Net模型在分割眼底图像时无法分割末梢微小血管和无法处理噪声干扰等问题,本文提出了一种U-Net结合小波域判别器来增强视网膜血管分割的算法。首先,改进的U-Net网络作为生成器,生成的分割图像与人工标注的标签经过小波变换,提取高频子带后送入判别器进行判别。判别器通过负反馈的方式优化生成器的分割结果。此外,本文在U-Net的编码器部分采用密集连接替代传统的卷积模块,减少模型参数的同时增强特征提取能力。为了进一步提升模型性能,我们在生成器中引入了挤压和激励注意力机制与和自定义的特征融合与注意力门机制。在CHASED_B1STAREDRIVE 三个公开数据集上进行实验,准确性分别为96.54%96.35%96.42%,灵敏性分别为80.16%77.34%80.46%,特异性分别为98.66%99.19%98.72%AUC分别为98.57%98.14%98.19%。实验结果证明:改进后的网络模型有更好的分割性能,较U-NetDual-Transformer模型在多个指标上均有较大提升。

关键词:深度学习,视网膜血管分割,U-Net,注意力机制,密集连接,小波域判别器

扫二维码浏览全文 

Cite this article

12204_OF_25_083下载.png

Quan, H., Wang, Z. & Zhang, L. U-Net Model Integrated with Wavelet Domain Discriminator for Retinal Vessel Segmentation. J. Shanghai Jiaotong Univ. (Sci.) (2025). https://doi.org/10.1007/s12204-025-2877-6

12204_OF_25_083_GraphAbstract.jpg



https://blog.sciencenet.cn/blog-45888-1513031.html

上一篇:[转载]用于单心室诊断的级联CAUNet
收藏 IP: 202.120.12.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-12-5 17:50

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部