lvxiangyang的个人博客分享 http://blog.sciencenet.cn/u/lvxiangyang

博文

基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析实践技术应用

已有 582 次阅读 2025-12-8 10:48 |个人分类:遥感|系统分类:科研笔记

随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。R语言中,随机森林的实现与应用非常方便,R语言提供了多种包用于构建和优化随机森林模型。R语言的随机森林实现不仅支持分类和回归任务,还支持处理多类别问题、处理缺失数据,以及评估变量重要性等功能。

第一章基础理论、机器学习与数据准备

1.1 遥感数据在生态学中的应用1.2 常见的机器学习算法及其遥感中的应用

机器学习基础 机器学习是一门研究如何通过数据来自动改进模型和算法性能的学科。常见的机器学习算法:极限梯度提升机(XGBoost)、随机森林(Random Forest,RF)梯度提升决策树(GBDT)

机器学习算法在生态学中的应用分析1.3 R语言环境设置与基础

(1)安装R及集成开发环境(IDE);

(2)R语言基础语法与数据结构,包括:程序包安装、加载、更新,数据读取与输出,ggplot2常规画图等。1.4 遥感数据处理与特征提取

(1)栅格数据预处理

栅格数据信息查看、统计和可视化

栅格数据掩膜提取、镶嵌、重采样等

(2)植被特征指数解释与提取:归一化植被指数、水体指数等数十种植被指数

(3)变量筛选与最佳组合的选择:

主成分分析(Principal Component Analysis,PCA)与Boruta 算法

第二章建模与空间预测

2.1预测模型的建立

随机森林(RF)、极限梯度提升机(XGBoost)和支持向量机(SVM)等机器学习算法,分别建立预测模型,并参数调优。

2.2 最优模型空间预测

通过R2、RMSE、MAE等指标评价模型效率,选择最优模型进行空间预测。

2.3 预测变量重要性分析

分析解释变量对模型预测结果的影响,通过特征重要性分析等方法识别并量化解释变量与因变量。

2.4 预测结果空间分布制图

第三章实践案例与项目

3.1 实际案例分析

(1)机器学习案例分析:以随机森林为例,分析高水平论文结构与写作思路、复现相关图表

(2)整合、分析机器学习在遥感、生态领域的经典论文。

原文:基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析实践技术应用



https://blog.sciencenet.cn/blog-3595493-1513400.html

上一篇:Delft3D水动力与泥沙运动模拟
下一篇:基于R语言BIOMOD2及机器学习方法的物种分布模拟与案例分析实践技术应用
收藏 IP: 111.225.79.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-12-16 04:47

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部