YucongDuan的个人博客分享 http://blog.sciencenet.cn/u/YucongDuan

博文

Analysis of Philosophy by DIKWP Semantic Mathematics(初学者版)

已有 1066 次阅读 2024-10-16 10:58 |系统分类:论文交流

Mathematical Analysis of Philosophical Problems Using DIKWP Semantic Mathematics

Yucong Duan

International Standardization Committee of Networked DIKWfor Artificial Intelligence Evaluation(DIKWP-SC)

World Artificial Consciousness CIC(WAC)

World Conference on Artificial Consciousness(WCAC)

(Email: duanyucong@hotmail.com)

Introduction

We will investigate into the 12 philoshophical problems by Prof. Yucong Duan using the DIKWP Semantic Mathematics framework proposed by Prof. Yucong Duan. This analysis will be more mathematical, incorporating the formal definitions, mathematical representations, and examples from the DIKWP Semantic Mathematics. We will systematically apply the mathematical formulations of Data (D), Information (I), Knowledge (K), Wisdom (W), and Purpose (P) to each philosophical problem, and explore the interactions between these components using the mathematical structures defined.

1. The Mind-Body Problem

Overview:

The mind-body problem explores the relationship between mental states (mind) and physical brain states (body). It questions how subjective experiences arise from physical processes.

DIKWP Components:

  • Data (D): Neural data, brain imaging results, physiological measurements.

  • Information (I): Patterns and correlations identified between neural data and mental states.

  • Knowledge (K): Theories explaining the mind-body relationship, such as dualism, physicalism.

  • Wisdom (W): Ethical considerations regarding consciousness, personal identity, treatment of mental disorders.

  • Purpose (P): Goals such as improving mental health treatments, understanding consciousness.

Mathematical Modeling:

1. Data Conceptualization

  • Semantic Attribute Set (S):

    S={Neural activity patterns,Brain regions involved}S = \{ \text{Neural activity patterns}, \text{Brain regions involved} \}S={Neural activity patterns,Brain regions involved}

  • Data Concept Set (D):

    D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

    Each data element ddd represents a specific neural measurement sharing common attributes.

2. Information Conceptualization

  • Information Semantics Processing Function (FI):

    FI:D→IFI: D \rightarrow IFI:DI

    Transform neural data DDD into information III by identifying differences and patterns.

  • Example:

    • Identify correlations between neural patterns and subjective reports.

    • I=FI(D)I = FI(D)I=FI(D) includes mappings of neural data to information about neural correlates of consciousness.

3. Knowledge Conceptualization

  • Knowledge Graph (K):

    K=(N,E)K = (N, E)K=(N,E)

    • NNN: Concepts such as "consciousness," "neural correlates," "subjective experience."

    • EEE: Relationships like "is associated with," "influences."

  • Edges Representation:

    e=(ni,nj,r)e = (n_i, n_j, r)e=(ni,nj,r)

    • For example, e1=(Neural Activity Pattern A,Subjective Experience B,"correlates with")e_1 = (\text{Neural Activity Pattern A}, \text{Subjective Experience B}, \text{"correlates with"})e1=(Neural Activity Pattern A,Subjective Experience B,"correlates with")

  • Knowledge Formation Function:

    FK:I→KFK: I \rightarrow KFK:IK

    • Abstracts information III into structured knowledge KKK.

4. Wisdom Conceptualization

  • Decision Function:

    W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D

    • Processes all DIKWP components to generate optimal decisions D∗D^*D.

  • Example:

    • Integrate knowledge KKK with ethical considerations to decide on appropriate treatments.

    • Include wisdom regarding patient autonomy, consent, and well-being.

5. Purpose Conceptualization

  • Purpose Tuple:

    P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)

    • Input: Current understanding of mind-body interactions.

    • Output: Desired goals, such as effective therapies, deeper understanding.

  • Transformation Function:

    T:Input→OutputT: \text{Input} \rightarrow \text{Output}T:InputOutput

    • Plan research strategies to achieve the purpose.

Interactions and Transformations:

  • Data to Information Transformation (D → I):

    • Use FIFIFI to map neural data to information about neural correlates.

    • Mathematical Representation:

      I=FI(D)I = FI(D)I=FI(D)

  • Information to Knowledge Transformation (I → K):

    • Use FKFKFK to form theories explaining mind-body relations.

      K=FK(I)K = FK(I)K=FK(I)

  • Knowledge to Wisdom Transformation (K → W):

    • Apply wisdom function to integrate knowledge with ethical considerations.

      W:K→D∗W: K \rightarrow D^*W:KD

  • Wisdom to Purpose Alignment (W → P):

    • Align decisions with the overarching purpose PPP.

      P=TWP(W)P = TWP(W)P=TWP(W)

  • Purpose to Data Influence (P → D):

    • Purpose PPP influences data collection strategies.

      D′=TPD(P)D' = TPD(P)D=TPD(P)

Conclusion:

By mathematically modeling the mind-body problem using the DIKWP Semantic Mathematics, we see how data is transformed into information, structured into knowledge, applied wisely, and aligned with purpose. This formalism allows for precise analysis and highlights the interactions between components.

2. The Hard Problem of Consciousness

Overview:

The hard problem addresses why and how physical processes in the brain give rise to subjective experiences (qualia).

DIKWP Components:

  • Data (D): Neural activity data, subjective experience reports.

  • Information (I): Identification of the explanatory gap between physical processes and experiences.

  • Knowledge (K): Theories attempting to explain consciousness.

  • Wisdom (W): Acknowledgement of limitations, ethical considerations.

  • Purpose (P): Develop a comprehensive theory of consciousness.

Mathematical Modeling:

1. Data Conceptualization

  • Semantic Attribute Set (S):

    S={Neural measurements,Subjective reports}S = \{ \text{Neural measurements}, \text{Subjective reports} \}S={Neural measurements,Subjective reports}

  • Data Concept Set (D):

    D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

2. Information Conceptualization

  • Information Semantics Processing Function (FI):

    FI:D→IFI: D \rightarrow IFI:DI

    • Identify differences constituting the explanatory gap.

  • Example:

    • I=FI(D)I = FI(D)I=FI(D) captures the lack of direct correlation between neural data and subjective experiences.

3. Knowledge Conceptualization

  • Knowledge Graph (K):

    K=(N,E)K = (N, E)K=(N,E)

    • NNN: Concepts like "physical processes," "subjective experience," "explanatory gap."

    • EEE: Relationships such as "does not fully explain."

  • Knowledge Formation Function:

    FK:I→KFK: I \rightarrow KFK:IK

4. Wisdom Conceptualization

  • Decision Function:

    W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D

    • Decide on research directions while acknowledging limitations.

5. Purpose Conceptualization

  • Purpose Tuple:

    P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)

    • Input: Incomplete understanding.

    • Output: New theoretical developments.

Interactions and Transformations:

  • Data to Information (D → I):

    I=FI(D)I = FI(D)I=FI(D)

  • Information to Knowledge (I → K):

    K=FK(I)K = FK(I)K=FK(I)

  • Purpose to Knowledge Influence (P → K):

    K′=TPK(P)K' = TPK(P)K=TPK(P)

Conclusion:

Mathematical modeling highlights the challenges in achieving completeness in knowledge (KKK) due to the explanatory gap. The formalism shows limitations in transforming information (III) into a complete and consistent knowledge system.

3. Free Will vs. Determinism

Overview:

Examines whether human actions are freely chosen or determined by prior states.

DIKWP Components:

  • Data (D): Observations of decision-making processes, neurological data.

  • Information (I): Patterns indicating deterministic or random behaviors.

  • Knowledge (K): Theories on free will and determinism.

  • Wisdom (W): Ethical implications for moral responsibility.

  • Purpose (P): Understanding human agency, informing societal norms.

Mathematical Modeling:

1. Data Conceptualization

  • Semantic Attribute Set (S):

    S={Behavioral data,Neural responses}S = \{ \text{Behavioral data}, \text{Neural responses} \}S={Behavioral data,Neural responses}

  • Data Concept Set (D):

    D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

2. Information Conceptualization

  • Information Semantics Processing Function (FI):

    FI:D→IFI: D \rightarrow IFI:DI

    • Identify differences suggesting free will or determinism.

  • Example:

    • I=FI(D)I = FI(D)I=FI(D) includes information on patterns of decision-making.

3. Knowledge Conceptualization

  • Knowledge Formation Function:

    FK:I→KFK: I \rightarrow KFK:IK

    • Formulate philosophical theories.

4. Wisdom Conceptualization

  • Decision Function:

    W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D

    • Apply ethical considerations to knowledge.

5. Purpose Conceptualization

  • Purpose Tuple:

    P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)

    • Input: Current theories and data.

    • Output: Policies reflecting understanding.

Interactions and Transformations:

  • Data to Information (D → I):

    I=FI(D)I = FI(D)I=FI(D)

  • Information to Knowledge (I → K):

    K=FK(I)K = FK(I)K=FK(I)

  • Knowledge to Wisdom (K → W):

    D∗=W(K)D^* = W(K)D=W(K)

  • Purpose to Data Influence (P → D):

    D′=TPD(P)D' = TPD(P)D=TPD(P)

Conclusion:

Mathematical modeling illustrates the transformation of data into knowledge and its application in ethical decision-making, aligned with societal purposes.

4. Ethical Relativism vs. Objective Morality

Overview:

Explores whether moral principles are universal or culturally dependent.

DIKWP Components:

  • Data (D): Cultural practices, moral codes from various societies.

  • Information (I): Differences and similarities in moral practices.

  • Knowledge (K): Ethical theories, principles.

  • Wisdom (W): Application of ethical knowledge considering diversity.

  • Purpose (P): Promote understanding, respect diversity, enhance well-being.

Mathematical Modeling:

1. Data Conceptualization

  • Semantic Attribute Set (S):

    S={Moral codes,Cultural practices}S = \{ \text{Moral codes}, \text{Cultural practices} \}S={Moral codes,Cultural practices}

  • Data Concept Set (D):

    D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

2. Information Conceptualization

  • FI: D → I

    • Identify differences in moral codes.

3. Knowledge Conceptualization

  • FK: I → K

    • Formulate ethical theories.

4. Wisdom Conceptualization

  • W: { D, I, K, W, P } \rightarrow D^ *

    • Apply knowledge to promote understanding.

5. Purpose Conceptualization

  • P = (\text{Input}, \text{Output})

    • Input: Varied moral practices.

    • Output: Ethical frameworks respecting diversity.

Interactions and Transformations:

  • Similar to previous problems, with emphasis on ethical considerations.

Assessing Completeness and Consistency Mathematically

Completeness:

  • Knowledge (K): Should be logically complete, covering all relevant propositions derived from information (III).

  • Mathematical Representation:

    • K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}

  • Completeness Criterion:

    • For any proposition ϕ\phiϕ in the language LLL, ϕ∈K\phi \in KϕK or ¬ϕ∈K\neg \phi \in K¬ϕK.

Consistency:

  • Knowledge (K): Must be free from contradictions.

  • Consistency Criterion:

    • ∄ϕ\nexists \phiϕ such that ϕ∈K\phi \in KϕK and ¬ϕ∈K\neg \phi \in K¬ϕK.

Application to Problems:

  • In each philosophical problem, we assess whether the knowledge formed satisfies logical completeness and consistency.

  • Example for the Mind-Body Problem:

    • Ensure that all propositions about the relationship between mind and body are accounted for.

    • Check that no contradictions exist within the theoretical frameworks.

Relating the Problems Mathematically

Interconnected Knowledge Graphs:

  • Nodes: Concepts from different philosophical problems.

  • Edges: Relationships between concepts.

  • Mathematical Representation:

    • Ntotal=⋃iNiN_{total} = \bigcup_{i} N_iNtotal=iNi

    • Etotal=⋃iEiE_{total} = \bigcup_{i} E_iEtotal=iEi

    • Unified Knowledge Graph Ktotal=(Ntotal,Etotal)K_{total} = (N_{total}, E_{total})Ktotal=(Ntotal,Etotal)

  • Implications:

    • Shared concepts and theories enhance the completeness of the overall knowledge system.

    • Cross-problem analysis can identify inconsistencies or reinforce consistency.

Conclusion

By applying the DIKWP Semantic Mathematics to the philosophical problems, we have provided a mathematical analysis of the transformations and interactions between Data (D), Information (I), Knowledge (K), Wisdom (W), and Purpose (P). This approach allows for a precise, structured understanding of complex cognitive processes and highlights the mathematical underpinnings of philosophical inquiries.

Note to the Reader

This analysis has aimed to provide a mathematical perspective on the application of the DIKWP model to philosophical problems, incorporating the detailed definitions and mathematical formulations provided. If you desire further mathematical detail on specific problems or aspects, please let me know, and I will expand on those areas.

  1. International Standardization Committee of Networked DIKWP for Artificial Intelligence Evaluation (DIKWP-SC),World Association of Artificial Consciousness(WAC),World Conference on Artificial Consciousness(WCAC)Standardization of DIKWP Semantic Mathematics of International Test and Evaluation Standards for Artificial Intelligence based on Networked Data-Information-Knowledge-Wisdom-Purpose (DIKWP ) Model. October 2024 DOI: 10.13140/RG.2.2.26233.89445 .  https://www.researchgate.net/publication/384637381_Standardization_of_DIKWP_Semantic_Mathematics_of_International_Test_and_Evaluation_Standards_for_Artificial_Intelligence_based_on_Networked_Data-Information-Knowledge-Wisdom-Purpose_DIKWP_Model

  2. Duan, Y. (2023). The Paradox of Mathematics in AI Semantics. Proposed by Prof. Yucong Duan:" As Prof. Yucong Duan proposed the Paradox of Mathematics as that current mathematics will not reach the goal of supporting real AI development since it goes with the routine of based on abstraction of real semantics but want to reach the reality of semantics. ".



https://blog.sciencenet.cn/blog-3429562-1455552.html

上一篇:Mathematize The 12 Philosophical Problems with DIKWP(初学者版)
下一篇:Analyze 12 PhiProblem for completeness and consistency(初学者版)
收藏 IP: 140.240.44.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

IP: 119.113.120.*   鍥炲 | 璧� 璧� +1 [2]宕旈敠鍗�   2023-2-16 23:02
璇曡В璇烩€滃崄鎭惰鈥濓細
1銆佲€滄病鏈変汉鎬х殑鏀挎不鈥濆繀浣夸汉绫荤ぞ浼氭拨涓洪噹铔ぞ浼氥€�
2銆佲€滄病鏈夋€濇兂鐨勫磭鎷溾€濆嵆鐩茬洰鐨勫磭鎷滐紝鏋佹槗瀵艰嚧绀句細鍙戝睍杩峰け鏂瑰悜鎴栨槸鍋忕姝g‘杞ㄩ亾銆�
3銆佲€滄病鏈変汉鏂囩殑绉戝鈥濈敋鎴栨垚涓哄▉鑳佷汉绫荤ぞ浼氬畨鍏ㄧ殑鍑跺櫒銆�
4銆佲€滄病鏈夐亾寰风殑鍟嗕笟鈥濆氨鏄牬鍧忔垨鏄壈涔卞叕骞冲競鍦猴紙鍖呮嫭绾夸笂绾夸笅锛夌З搴忕殑鍟嗗搧浜ゆ槗銆�
5銆佲€滄病鏈夎壇鐭ョ殑鐭ヨ瘑鈥濆氨绛変簬鏃犵煡鐢氭垨姣旀棤鐭ユ洿鍙€曠殑鐭ヨ瘑銆�
6銆佲€滄病鏈夌湡瀹炵殑鍘嗗彶鈥濆氨鏄负绡℃敼涓汉缁忓巻鎴栫ぞ浼氫簨浠舵墍浣滅殑娣锋穯瑙嗗惉鐨勫崙閯欓€犲亣锛屽嵆澶卞幓浜嗗叿鏈夆€滃彶瀹炲強鍏舵暀鑲蹭环鍊尖€濇剰涔夌殑鍘嗗彶銆�  
7銆佲€滄病鏈夌嫭绔嬬殑绮剧鈥濆氨鏄病鏈夌粡娴庣嫭绔嬩笌韬績鐙珛鐨勭悊蹇典笌鑳藉姏锛屽氨浼氬け鍘讳粬浜虹殑灏婇噸锛屽氨浼氳嚜鎴戝爼钀藉拰姣佺伃銆�
8銆佲€滄病鏈夎嚜鐢辩殑骞哥鈥濆氨鏄疄璐ㄤ笂鐨勪笉骞哥锛屽洜涓鸿嫢娌℃湁鑷敱锛屽張浣曡皥骞哥鍛紵锛�
9銆佲€滄病鏈夊姵鍔ㄧ殑瀵岃鈥濆氨鏄潬鎶曟満鍙栧阀鎴栫洍鎶㈡帬澶鸿幏寰楄储瀵岋紝閭e氨鏄噹铔ぞ浼氱殑鍔ㄧ墿灞炴€с€�
10銆佲€滄病鏈夊埗绾︾殑鏉冨姏鈥� 灏辨槸涓嶅姞绾︽潫鐨勫叕鏉冨姏锛屽氨浼氫激瀹充粬浜猴紝灏变細绁稿绀句細銆�
鍥炲  锛�   
2023-2-17 15:131 妤硷紙鍥炲妤间富锛� 璧� 璧� +1 | 鍥炲
IP: 113.234.133.*   鍥炲 | 璧� 璧� +1 [1]宕旈敠鍗�   2023-2-16 09:52
鈥滃崄鎭惰鈥濈‘瀹炴槸瀵规湁鎮栫ぞ浼氳繘姝ョ殑鍗佸ぇ缃伓鐨勭簿鍑嗘彁鐐硷紒涓烘鍗氭枃鐐硅禐   涓虹瀛︾綉鐐硅禐
鍥炲  锛� 璋㈣阿宕旇€佸笀鐨勮偗瀹�
2023-2-16 13:001 妤硷紙鍥炲妤间富锛� 璧� 璧� +1 | 鍥炲

1/1 | 鎬昏:2 | 棣栭〉 | 涓婁竴椤� | 涓嬩竴椤� | 鏈〉 | 璺宠浆

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-3-14 14:48

Powered by ScienceNet.cn

Copyright © 2007-2025 中国科学报社

返回顶部