||
(一)PyTorch的Tensor(张量)
这一部分详细参考博客: PyTorch的Tensor(张量)
主要包括:Tensor与Variable与区别、张量的创建(张量的创建有三大方法,第一类是直接创建,第二类是依据数值创建,第三类是依据概率创建)。
(二)PyTorch之nn.ReLU与F.ReLU的区别
import torch.nn as nn
import torch.nn.functional as F
import torch.nn as nn
class AlexNet_1(nn.Module):
def __init__(self, num_classes=n):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.features(x)
class AlexNet_2(nn.Module):
def __init__(self, num_classes=n):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
)
def forward(self, x):
x = self.features(x)
x = F.ReLU(x)
在如上网络中,AlexNet_1与AlexNet_2实现的结果是一致的,但是可以看到将ReLU层添加到网络有两种不同的实现,即nn.ReLU和F.ReLU两种实现方法。
其中nn.ReLU作为一个层结构,必须添加到nn.Module容器中才能使用,而F.ReLU则作为一个函数调用,看上去作为一个函数调用更方便更简洁。具体使用哪种方式,取决于编程风格。在PyTorch中,nn.X都有对应的函数版本F.X,但是并不是所有的F.X均可以用于forward或其它代码段中,因为当网络模型训练完毕时,在存储model时,在forward中的F.X函数中的参数是无法保存的。也就是说,在forward中,使用的F.X函数一般均没有状态参数,比如F.ReLU,F.avg_pool2d等,均没有参数,它们可以用在任何代码片段中。
点滴分享,福泽你我!Add oil!
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-30 15:35
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社