|
2. 介孔碳负极实现了钾离子的快速扩散,展现出高首库(76.7%)、高可逆容量和长循环稳定性。
3. 采用原位、非原位技术证明了介孔碳负极在充放电过程中可逆的结构变化。
介孔的引进是基于自刻蚀机制实现的。聚乙烯醇和乙酸锌的水溶液经静电纺丝技术形成纳米线前驱体,在随后的煅烧过程中,300°C时便形成了ZnO物相(图1b),质量损失主要发生在500°C之前(图1a),伴随聚乙烯醇的热解、碳化过程。700°C时ZnO颗粒均匀分布于纳米线,其直径~8 nm。800°C时,ZnO被碳还原成锌单质并气化,从而在纳米线内外原位形成大量介孔。
图1. 介孔碳的形成机理:(a) 介孔碳形成示意图(上)和Zn(Ac)₂/PVA在Ar气氛下热处理的TG/DSC曲线(下)。高温处理过程中的(b) 非原位XRD图谱和(c) 非原位Raman图谱。
II 结构表征
图2. 结构表征。(a) 介孔碳的HAADF-STEM图像,(b) HRTEM图像(插图:SAED图)。(c) 微孔碳的HAADF-STEM图像,(d) HRTEM图像(插图:SAED 图)。(e) 介孔碳和为微孔碳的N₂吸脱附曲线,(f) 孔径分布曲线。
原位TEM结果表明,相对于原始样品,嵌钾后介孔碳纳米线的形貌维持良好,没有明显的体积膨胀,验证了介孔对于缓冲体积膨胀的积极作用。此外,SAED和非原位Raman结果表明,放电过程中碳结构变得更加无序,充电时,其结构伴随着钾的脱出而恢复有序,说明其在充放电过程中的结构变化是可逆的,因此能实现高库伦效率和长循环稳定性。
图4. 介孔碳嵌/脱钾过程结构演变。介孔碳纳米线原始的(a) 和嵌钾后的(b) 原位TEM图像和SAED图。(c) 介孔碳纳米线嵌钾后的HAADF-STEM图像和对应的EDX元素分布图。(d) 非原位Raman图谱。
图3中CV曲线和充放电曲线显示两者具有不同的储钾行为,为了进一步探究,本工作基于多扫速CV测试结果,计算得到放电过程中不同电位的b值。通常,b值在0.5-1范围内,对于表面赝电容反应,b值接近于1,对于受扩散控制的插层反应,b值接近于0.5。如图5c所示,在0.4-1 V,介孔碳负极具有较强的电容性储钾,而插层反应在低电位(0.2 V以下)占据主导。结合GITT测试结果,两种机制共同作用,充分发挥了介孔碳的储钾能力,而在微孔碳中两种作用都较弱。充放电过程钾离子扩散系数的计算结果表明,钾离子在介孔碳负极中能够快速扩散,特别是在较高电位,几乎是在微孔碳中的两倍(图5e),因此介孔碳在高电位区间的储钾容量远高于微孔碳负极(图3c)。
麦立强
本文通讯作者
武汉理工大学 教授
主要从事纳米能源材料与器件领域的研究,包括新能源材料、微纳器件、面向能源的生物纳电子界面等前沿方向。率先将纳米器件应用于电化学储能研究,重点开展了纳米电极材料可控生长、性能调控、器件组装、原位表征、电输运与储能等系统性的基础研究,取得了一系列国际认可的创新性成果。
▍主要研究成果
▍Email: mlq518@whut.edu.cn
▍课题组主页
李琪
本文通讯作者
武汉理工大学 副教授
长期从事纳米材料的可控制备与应用的研究工作,近年来主要研究兴趣在电化学能源存储与转换,在纳米能源材料的可控制备、结构调控、化学/电化学反应机制等方面取得了一系列创新性的研究成果。
▍主要研究成果
▍Email: qi.li@whut.edu.cn
▍个人主页
Nano-Micro Letters《纳微快报》是上海交通大学主办、Springer Nature合作开放获取(open-access)出版的英文学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, commentary, perspective, letter, highlight, news, etc),包括微纳米材料的合成表征与性能及其在能源、催化、环境、传感、吸波、生物医学等领域的应用研究。已被SCI、EI、SCOPUS、DOAJ、CNKI、CSCD、知网、万方、维普等数据库收录。2019 JCR影响因子:12.264。在物理、材料、纳米三个领域均居Q1区(前15%)。2019 CiteScore:12.9,材料学科领域排名第4 (4/120)。中科院期刊分区:材料科学1区TOP期刊。全文免费下载阅读(http://springer.com/40820),欢迎关注和投稿。
E-mail:editor@nmletters.org
Tel:021-34207624
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-14 06:48
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社