||
图 文 导 读
图1 多体系统传递矩阵法可视化仿真设计通用软件
Figure 1 MSTMM visualization, simulation and design general-purpose software
图2 多体系统传递矩阵法与拉格朗日方程计算效率之比
Figure 2 Computational time ratio between MSTMM and classical Lagrange equations
南京理工大学芮筱亭院士研究团队在《国际机械系统动力学学报(英文)》(International Journal of Mechanical System Dynamics, IJMSD )发表了“多体系统传递矩阵法的过去、现在和未来”的综述论文。现代科学、技术和工程已发展到从全系统角度分析、解决研究对象在设计、制造、试验、评估和使用全生命周期的动力学问题以获得期望性能的理想工程产品的高级阶段,其目标是建立精确的系统动力学数学模型并对其快速数值求解,从而准确、快速地预测系统性能。以机械系统为例,几乎所有的机械系统动力学模型都可归结为多体系统动力学模型。建立用系统总体动力学方程描述的系统动力学数学模型,以及对数学模型的快速数值求解是多体系统动力学的两大主要挑战。通常多体系统动力学方法用微分方程或微分代数方程组成系统总体动力学方程研究多体系统动力学,由于实际复杂工程系统的系统矩阵阶次很高,计算速度无法满足其优化设计需求,同时,系统总体动力学方程建立过程繁琐复杂,不便于工程技术人员应用和推广。由芮筱亭院士在1993年首次提出的多体系统传递矩阵法是一种全新多体系统动力学方法,国际上也称为“芮方法”。该方法通过发现并利用系统中呈严格线性传递规律的状态矢量,用系统总传递方程和元件传递方程研究多体系统动力学,改变了用系统总体动力学方程研究多体系统动力学的研究模式,突破了系统矩阵阶次随系统自由度增加而增加导致计算速度迅速下降的技术瓶颈,大幅简化了多体系统动力学的研究过程,大幅降低了系统矩阵阶次从而大幅提高了计算速度。经过近30年不断发展完善,多体系统传递矩阵法已被广泛用于约150种复杂机械系统动力学的建模、仿真、设计、制造、试验、评估和使用。该文综述了多体系统传递矩阵法的基本思想、理论、算法、特点、软件和应用,讨论了未来发展方向以及在电学、声学、流体等其他各类科学、技术和工程中的拓展应用。多体系统传递矩阵法对力学系统中多体系统动力学的处理方法及其优点对各类科学、技术、工程用微分方程或微分代数方程及其求解描述系统动力学特性具有普遍意义,为各类科学、技术和工程系统动力学高效建模和计算,进而解决各类复杂系统在设计、制造、试验、评估和使用过程中的动力学问题,提供了强大手段。
The research team of Prof. Xiaoting Rui from Nanjing University of Science and Technology published a review article entitled "Multibody system transfer matrix method: the past, the present and the future" in the International Journal of Mechanical System Dynamics (IJMSD). Modern science, technology, and engineering have reached advanced level that allows analyzing and solving dynamics problems of objects during their whole lifecycle, i.e., design, manufacturing, testing, evaluation, and utilization, from the whole-system viewpoint. The goal is to establish accurate mathematical model for system dynamics and obtain efficient numerical solution to predict and improve system performance accurately and quickly, herein obtaining ideal engineering products with desired performance. For instance, almost all mechanical systems can be modeled as multibody systems. The development of the system global dynamics equations and their efficient numerical solution are the two main challenges in the field of multibody system dynamics. This is because conventional multibody system dynamics methods use system global dynamics equations formed by either differential equations or differential-algebraic equations. For practical and complex engineering applications, the conventional approaches lead to coefficient matrices with large dimensions that negatively impact computational speed and efficiency of the design process. Also, it is not convenient for engineering technicians to master and apply conventional multibody system dynamics methods since the assembly of the system global dynamics equation is cumbersome and complicated. The multibody system transfer matrix method (MSTMM), sometimes also referred to as Rui method, is a novel multibody system dynamics approach and was firstly presented by Prof. Xiaoting Rui in 1993. The MSTMM establishes multibody system dynamics equations by identifying and utilizing the linear transfer laws among element state vectors in the system, resulting in element transfer equations and the system overall transfer equation. It changes multibody system dynamics analysis pattern using system global dynamics equations, and does not lead to increase in the system matrix order with increase of system degrees of freedom, thereby resulting in significant reduction of the computational cost. The MSTMM not only simplifies multibody system dynamics analysis, but more importantly, reduces the system matrix order and thus drastically increase the computational speed. During the past three decades of continuous development and improvement, the MSTMM has been widely used in the modeling, simulation, design, manufacturing, testing, evaluation, and utilization of approximately 150 different complex mechanical systems. In this paper, the MSTMM basic idea, theory, algorithms, highlights, software, and applications are reviewed. MSTMM future research directions and generalization to other science, technology, and engineering areas, such as electrical, acoustic, and fluid systems, etc., are discussed. MSTMM strategies and their advantages for multibody system dynamics analysis in mechanical systems are applicable to various science, technology and engineering governed by differential equations or differential-algebraic equations. Further, they provide powerful means for system dynamics modeling and computation in various science, technology and engineering, to efficiently solve the dynamics problems of various complex systems during design, manufacturing, testing, evaluation, and utilization.
Keywords:
multibody system dynamics, multibody system transfer matrix method, transfer matrix, transfer equation, automatic assembly theorem, reduced multibody system transfer matrix method, theory, software, applications, acoustic system, electrical power system, fluid system
DOI: 10.1002/msd2.12037
Share this article:
https://onlinelibrary.wiley.com/doi/10.1002/msd2.12037
Cite this article:
Rui XT, Zhang JS, Wang X, Rong B, He B, Jin Z. Multibody system transfer matrix method: The past, the present, and the future. Int J Mech Syst Dyn. 2022;2:3-26.
作 者 简 介
芮筱亭 中国科学院院士、发射动力学家、复杂装备系统动力学工信部实验室主任、南京理工大学力学学科首席带头人。首创多体系统传递矩阵法,建立了多体系统发射动力学理论与技术体系,解决了提升我国30多型重大装备提升系统动力学性能、降低研制成本、保障发射安全的国家急需,在国内外得到150多项工程应用。以排名第一获国家技术发明奖和国家科技进步奖4项、国防科技创新团队奖;被5部委授予“国防科技工业杰出人才奖”,获“全国创新争先奖”称号;主编国际刊物或特刊3种、出版专著7部、发表论文400多篇、获授权发明专利100项、牵头制定颁布国家军用标准和行业标准26部。
张建书 南京理工大学大学发射动力学研究所,副研究员,硕士生导师。主持参与国防基础科研重点项目、装备预先研究项目、基础加强项目、振动噪声重大专项、科学挑战计划、陆军装备预先研究项目等科研项目10多项,合作出版专著1部,获软件著作权1项,获授权发明专利15项,合作发表SCI、EI收录论文30余篇。主要从事多体系统动力学与控制、多体系统传递矩阵法、多领域系统动力学与系统动力学软件开发等方面的研究工作。
王勋 南京理工大学兵器科学与技术专业在读博士生。研究方向为多体系统传递矩阵法和发射动力学,以第一作者发表SCI论文3篇。
戎保 南京理工大学发射动力学研究所教授,博士生导师。从事多体系统动力学与控制、含能材料制造工艺动力学等研究,主持/参与国防重大项目等国家与省部级课题10多项,在国内外核心期刊发表论文50多篇,获国家科技进步二等奖、中国青少年科技创新奖、江苏省优秀博士学位论文等。
何斌 南京理工大学发射动力学研究所教授,博士生导师。从事多体系统动力学、振动与噪声控制、发射动力学等研究,主持完成及在研国防重大项目等国家与省部级课题10多项,在国内外核心期刊发表论文60多篇,其中SCI、EI收录40余篇,合作出版专著教材2部,获省部级以上科技奖励3项。
靳展 南京理工大学兵器科学与技术专业在读博士生。研究方向为多体系统传递矩阵以及机电耦合动力学建模与仿真。
期 刊 简 介
IJMSD由来自12个国家的15位院士、14位国际学会主席、13位其他国际期刊主编等53位科学家和国际出版巨头美国Wiley出版社合作创立。主编为南京理工大学芮筱亭院士,3位合作主编分别是加拿大皇家学会会士、加拿大工程院院士、欧洲科学院院士、加拿大麦吉尔大学Marco Amabili院士,国际理论与应用力学联盟IUTAM)前司库、国际多体系统动力学协会(IMSD)前主席、德国斯图加特大学Peter Eberhard教授和美国工程院及科学院两院院士、英国皇家学会外籍院士、欧洲科学院外籍院士、中国科学院外籍院士、美国工程科学协会前主席、美国西北大学Yonggang Huang院士。
IJMSD旨在用机械系统动力学科学与技术为现代装备设计、制造、试验、评估和使用全生命周期性能的提升提供先进的理论、软件、方法、器件、标准,为全球科学家和工程专家提供广泛的机械系统动力学国际交流平台。IJMSD强调从“系统”视角及系统级工具理解动力学,所涉及的机械系统不仅包括各种不同尺度的机械系统和结构,还包括具有多物理场/多学科特征的综合机械系统。
目前,IJMSD 已被ESCl, Scopus, Inspec, DOAJ等收录。2023年免收出版费,并为已录用稿件免费提供专业语言润色服务,欢迎全球科学家投稿交流。
期刊主页:
https://onlinelibrary.wiley.com/journal/27671402
投稿网址:
https://mc.manuscriptcentral.com/ijmsd
编辑部邮箱:office@ijmsd.net
请长按二维码 关注IJMSD
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-20 11:38
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社