链路预测作为数据挖掘领域的研究方向之一在计算机领域已有一些早期的研究。他们的研究思路和方法主要基于马尔科夫链和机器学习。Sarukkai[16]应用马尔科夫链进行网络的链路预测和路径分析。之后Zhu等人[17]将基于马尔科夫链的预测方法扩展到了自适应性网站(adaptive web sites)的预测中。此外,Popescul和Ungar[18]提出一个回归模型在文献引用网络中预测科学文献的引用关系。他们的方法不仅用到了引文网络的信息还有作者信息,期刊信息以及文章内容等外部信息。应用节点属性的预测方法还有很多,例如O’Madadhain等人[19]利用网络的拓扑结构信息以及节点的属性建立了一个局部的条件概率模型来进行预测。Lin[20]基于节点的属性定义了节点间的相似性,可以直接用来进行链路预测。虽然应用节点属性等外部信息的确可以得到很好的预测效果,但是很多情况下这些信息的获得是非常困难的,甚至是不可能的。比如很多在线系统的用户信息都是保密的。另外即使获得了节点的属性信息也很难保证信息的可靠性,即这些属性是否反映了节点的真实情况,例如在线社交网络中很多用户的注册信息都是虚假的。更进一步,在能够得到节点属性的精确信息的情况下,如何鉴别出哪些信息对网络的链路预测是有用的,哪些信息是没用的仍然是个问题。因此与节点属性信息相比较,已观察到的网络结构或者用户的历史信息更容易获得也是更可靠的。
[1] L. Getoor, C. P. Diehl, Link Mining: A Survey, ACM SIGKDD Explorations Newsletter 7 (2005) 3.
[2] R. Albert, A.-L. Barabasi, Statisrical Mechanics of Complex Networks, Rev. Mod. Phys. 74 (2002) 47.
[3] S. N. Dorogovtsev, J. F. F.Mendes, Evolution of networks, Adv. Phys. 51 (2002) 1079.
[4] E. A. Leicht, P. Holme, M. E. J. Newman, Vertex similarity in networks, Phys. Rev. E 73 (2006) 026120.
[5] Y. Pan, D.-H. Li, J.-G. Liu, J.-Z. Liang, Detecting community structure in complex networks via node similarity, Physica A (to be published).
[6] H. Yu, et al., High-quality binary protein interaction map of the yeast interactome network, Science 322 (2008) 104.
[7] M. P. H. Stumpf, T. Thorne, E. de Silva, R. Stewart, H. J. An, M. Lappe, C. Wiuf, Estimating the size of the human interactome, Proc. Natl. Sci. Acad. U.S.A. 105 (2008) 6959.
[8] L. A. N. Amaral, A truer measure of our ignorance, Proc. Natl. Sci. Acad. U.S.A. 105 (2008) 6795.
[9] L. Schafer, J. W. Graham, Missing data: Our view of the state of the art, Psychol. Methods 7 (2002) 147.
[10] G. Kossinets, Effects of missing data in social networks, Social Networks 28 (2006) 247.
[11] R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, Proc. ACM SIGKDD 2006, ACM Press, New York, 2006, p. 611.
[12] B. Gallagher, H. Tong, T. Eliassi-Rad, C. Falousos, Using ghost edges for classification in sparselylabelednetworks, Proc. ACM SIGKDD 2008, ACM Press, New York, 2008, p. 256.
[13] K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea, A. A. Nanavati, A. Joshi, Social Ties and their Relevance to Churn in Mobile Telecom Networks, Proc. EDBT’08, ACM Press, New York, 2008, p. 668.
[14] R. Guimera, M. Sales-Pardo, Missing and spurious interactions and the reconstruction of complex networks, Proc. Natl. Sci. Acad. U.S.A. 106 (2009) 22073.
[15] C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Field, P. Bork, Comparative assessment of large-scale data sets of protein-protein interactions, Nature 417 (2002) 399.
[16] R. R. Sarukkai, Link prediction and path analysis using markov chains, Computer Networks 33 (2000) 377.
[17] J. Zhu, J. Hong, J. G. Hughes, Using markov chains for link prediction in adaptive web sites, Lect. Notes Comput. Sci. 2311 (2002) 22.
[18] A. Popescul, L. Ungar, Statistical relational learning for link prediction, Proc. Workshop on Learning Statistical Models from Relational Data, ACM Press, New York, 2003, p. 81.
[19] J. O’Madadhain, J. Hutchins, P. Smyth, Prediction and ranking algorithms for even-based network data, Proc. ACM SIGKDD 2005, ACM Press, New York, 2005.
[20] D. Lin, An information-theoretic definition of similarity, Proc. 15th Intl. Conf. Machine Learning, Morgan Kaufman Publishers, San Francisco, 1998.
[21] F. Fouss, A. Pirotte, J.-M. Renders, M. Saerens, Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation, IEEE Trans. Knowl. Data. Eng. 19 (2007) 355.
[22] P. Chebotarev, E. Shamis, The matrix-forest theorem and measuring relations in small social groups, Automat. Remote Contr. 58 (1997) 1505.
[23] D. Liben-Nowell, J. Kleinberg, The Link-Prediction Problem for Social Networks, J. Am. Soc. Inform. Sci. Technol. 58 (2007) 1019.
[24] L. A. Adamic, E. Adar, Friends and neighbors on the web, Social Networks 25 (2003) 211.
[25] T. Zhou, L. Lü, Y.-C. Zhang, Predicting missing links via local information, Eur. Phys. J. B 71 (2009) 623.
[26] Y.-L. Wang, T. Zhou, J.-J. Shi, J. Wang, D.-R. He, Emipirical analysis of dependence between stations in Chinese railway network, Physica A 388 (2009) 2949.
[27] L. Lü, C.-H. Jin, T. Zhou, Similarity index based on local paths for link prediction of complex networks, Phys. Rev.E 80 (2009) 046122.
[28] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18 (1953) 39.
[29] W.-P. Liu, L. Lü, Link Prediction Based on Local Random Walk, Europhys. Lett.89 (2010) 58007.
[30] Z. Huang, X. Li, H. Chen, Link prediction approach to collaborative filtering, Proc. 5th ACM/IEEE-CS Joint Conf. Digital Libraries, ACM Press, New York, 2005.
[31] A. Clauset, C. Moore, M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks, Nature 453 (2008) 98.
[32] P. W. Holland, K. B. Laskey, S. Leinhard, Stochastic blockmodels: First steps, Social Networks 5 (1983) 109.
[33] L. Lü, T. Zhou, Link Prediction in Weighted Networks: The Role of Weak Ties, Europhys. Lett. 89 (2010) 18001.
[34] M. S. Granovetter, The strength of weak ties, Am. J. Sociology 78 (1973) 1360.
[35] J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting Positive and Negative Links in Online Social Networks, Proc. WWW 2010, ACM, New York, 2010.
[36] T. Antal, P. Krapivsky, S. Redner, Dynamics of social balance on networks, Phys. Rev. E 72 (2005) 036121. [37] S. Marvel, S. Strogatz, J. Kleinberg, Energy landscape of social balance, Phys. Rev. Lett. 103 (2009) 198701.
[38] S. Redner, Teasing out the missing links, Nature 453 (2008) 47.
[39] Q.-M. Zhang, M.-S. Shang, L. Lü, Similarity-based classification in partial labeled networks, arXiv: 1003.0837.
[40] L. Zhang, K. Hu, Y. Tang, Predicting disease-related genes by topological similarity in human protein-protein interaction network, Cent. Eur. J. Phys. (to be published).
[41] T. Murata, S. Moriyasu, Link prediction of social networks based on weighted proximity measures, Proc. IEEE/WIC/ACM Intl. Conf. Web Intelligence, ACM Press, New York, 2007.
[42] G. Bianconi, Entropy of network ensembles, Phys. Rev. E 79 (2009) 036114.
[43] K. Anand, G. Bianconi, Entropy measures for networks: Toward an information theory of complex topologies, Phys. Rev. E 80 (2009) 045102.
[44] G. Bianconi, P. Pin, M. Marsili, Assessing the relevance of node features for network structure, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 11433.
[45] J. Li, B.-H. Wang, W.-X. Wang, T. Zhou, Network Entropy Based on Topology Configuration and Its Computation to Random Networks, Chin. Phys. Lett. 25 (2008) 4177.
[46] A.-L. Barabasi, Scale-Free Networks: A Decade and Beyond, Science 325 (2009) 412.
[47] G. Caldarelli, Scale-Free Networks: Complex webs in nature and technology, Oxford Press, New York, 2007.
[48] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks,Science 286 (1999) 509.
[49] D. Garlaschelli, A. Capocci, G. Caldarelli, Self-organized network evolution coupled to extremal dynamics, Nat. Phys. 3 (2007) 813.
[50] S. Valverde, R. F. Cancho, R. V. Sole, Scale-free networks from optimal design, Europhys. Lett. 60 (2002) 512.
[51] M. Baiesi, S. S. Manna, Scale-free networks from a Hamiltonian dynamics,Phys. Rev. E 68 (2003) 047103.
[52] B. J. Kim, A. Trusina, P. Minnhagen, K. Sneppen, Self organized scale-free networks from merging and regeneration, Eur. Phys. J. B 43 (2005) 369.
[53] J. I. Perotti, O. V. Billoni, F. A. Tamarit, D. R. Chialvo, S. A. Cannas, Emergent self-organized complex network topology out of stability constraints, Phys. Rev. Lett. 103 (2009) 108701.
[54] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, T. Eliassi-Rad, Collective classification in network data, AI Magazine 29 (2008) 93.
[55] T. Zhou, Statistical Mechanics of Information Systems: Information Filtering on Complex Networks, Ph. D. Thesis, University of Fribourg, 2010.